求上限为e,下限为1的定积分∫(4^根号下1+lnx)\/xdx
求上限为e,下限为1的定积分∫(4^根号下1+lnx)\/xdx 我来答 1个回答 #热议# 网文质量是不是下降了?answerist 2012-12-07 · TA获得超过2481个赞 知道小有建树答主 回答量:2021 采纳率:0% 帮助的人:1158万 我也去答题访问个人页 关注 展开全部 已赞过 已踩过< 你对这个回答的评价...
计算定积分上限是e,下限是1,被积函数为1+lnx\/x
.3\/2 原式=∫1\/x dx+∫(1\/x)*lnx dx=lnx+∫lnx d lnx=lnx+(lnx)^2\/2 带入上限e,下线1,[lne-ln1]+[(lne)^2\/2-(ln1)^2\/2]=3\/2
∫(1+lnx)\/x dx
1\/xdx=dlnx
求(1+lnx)\/xdx 在积分下限1到积分上限e的定积分
=(1+lnx)dlnx =lnx+(lnx)^2\/2 定积分等于3\/2 .
高等数学定积分计算题:上线e.下线1,1+Inx\/xdx.
(1+lnx)\/xdx?还是1+(lnx)\/x?按前者计算:1\/xdx=d(lnx),所以被积函数的原函数就是lnx+1\/2(lnx)^2,代入上下限,得积分的结果是1+1\/2=3\/2
您好,请问。∫上限为e下限为1(1+Inx)dx的定积分怎么求?
用分部积分法 ∫(1+lnx)dx=x+∫lnxdx=x+ xlnx-∫x\/xdx=x+xlnx-x=xlnx
计算定积分∫lnxdx,(下限为1,上限为e)
∫e\/1_lnxdx=[lnx*x]e\/1-∫e\/1_xdlnx =e-∫e\/1_x*1\/xdx =e-∫e\/1_1dx =e-[x]e\/1 =1 这是一个公式
求定积分:∫xlnxdx上限为e下限为1
∫xlnxdx上限为e下限为1的定积分为:1\/4(e^2+1)。解答过程如下:∫(e,1)lnxd(1\/2*x^2)=∫(e,1)1\/2*x^2lnx–∫(e,1)1\/2*x^2d(lnx)=1\/2 e^2–∫(e,1)1\/2xdx =1\/2e^2–1\/4e^2+1\/4 =1\/4(e^2+1)...
(上限为e下限为1)∫xlnx dx的定积分怎么求?
=1\/2∫lnx dx^2 =xlnx\/2-1\/2∫x^2dlnx =x^2lnx\/2-1\/2∫xdx =x^2lnx\/2-x^2\/4+C 定积分求法 1、分项积分法 就是积分的性质,比如一个函数在不同的定义域有不同的表达式,积分的时候就分段来积分.那么表达式一样的函数,也可以分成一段段来积分,当然前提要满足函数可积。2、 三角替换...
∫xlnxdx上限为e下限为1的定积分为:
∫xlnxdx上限为e下限为1的定积分为:1/4(e^2+1)。解答过程如下:∫(e,1)lnxd(1/2*x^2)=∫(e,1)1/2*x^2lnx–∫(e,1)1/2*x^2d(lnx)=1/2e^2–∫(e,1)1/2xdx =1/2e^2–1/4e^2+1/4 =1/4(e^2+1)...