求不定积分∫(1\/x^2+2x+5)dx,要过程 谢谢
∫1\/(x^2+2x+5)dx =∫1\/[(x+1)^2+4]dx =∫1\/[(x+1)^2+2^2]d(x+1)=(1\/2)arctan[(x+1)\/2]+C
求不定积分∫(1\/x^2+2x+5)dx
方法如下,请作参考:若有帮助,请采纳。
不定积分∫1\/(x^2+2x+5) dx怎么求?
解:∫1\/(x^2+2x+5)dx =∫1\/((x+1)^2+4)dx 令x+1=2tant,则x=2tant-1 那么,∫1\/(x^2+2x+5)dx =∫1\/((x+1)^2+4)dx =∫1\/((2tant)^2+4)d(2tant-1)=1\/4∫1\/(sect)^2d(2tant)=1\/2∫dt=t\/2+C 又因为x+1=2tant,所以t=arctan((x+1)\/2)则∫1\/(x...
积分公式∫(1\/(x^2+2x+5)) dx
∫(1\/(x^2+2x+5))dx的不定积分为1\/2arctan((x+1)\/2)+C 解:∫(1\/(x^2+2x+5))dx =∫1\/[(x+1)^2+4]dx =1\/4∫1\/[((x+1)\/2)^2+1]dx 令(x+1)\/2=t,则x=2t-1 则1\/4∫1\/[((x+1)\/2)^2+1]dx =1\/4∫1\/(t^2+1)d(2t+1)=1\/2∫1\/(t^2+1)...
x 1\/x^2-2x 5不定积分怎么求
∫(1\/(x^2+2x+5))dx的不定积分为1\/2arctan((x+1)\/2)+C 解:∫(1\/(x^2+2x+5))dx =∫1\/[(x+1)^2+4]dx =1\/4∫1\/[((x+1)\/2)^2+1]dx 令(x+1)\/2=t,则x=2t-1 则1\/4∫1\/[((x+1)\/2)^2+1]dx =1\/4∫1\/(t^2+1)d(2t+1)=1\/2∫1\/(t^2+1)...
换元法求不定积分1\/根号(x^2+2x+5)dx
设x+1=2tant,t=actan[(x+1)\/2],则√[(x+1)²+4]=√[4(tan²t+1)]=√(4sec²t)=2sect,d(x+1)=2sec²tdt ∴原式=∫1\/√[(x+1)²+4]d(x+1)=∫1\/(2sect)*2sec²tdt =∫sectdt =ln|sect+tant|+C =ln|sec(actan[(x+1)\/2])...
求不定积分x+1\/x^2+2x+5dx
凑微分 ∫(x+1)\/(x^2+2x+5)dx =1\/2∫1\/(x^2+2x+5)d(x^2+2x+5)=1\/2ln(x^2+2x+5)+C
求不定积分∫(x\/x^2+2x+5)dx解答详细过程 谢谢
具体回答如图:连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
不定积分(x+1)\/(x^2+2x+5)dx=
x^2+2x+5=(x+1)^2+4, 做个代换u=x+1,原式=∫u\/(u^2+4)du =1\/2∫ 1\/(u^2+4)d(u^2)=1\/2*ln(u^2+4)+C =1\/2*ln[(x+1)^2+4]+C =1\/2*ln(x^2+2x+5)+C
x+1\/x²+2x+5的不定积分
解:用“凑”微分的方法求解。原式=(1\/2)∫2(x+1)dx\/(x^2+2x+5)=(1\/2)∫d(x^2+2x+5)\/(x^2+2x+5)=(1\/2)ln(x^2+2x+5)+C。供参考。