∫(x/1+x^2)dx=1/2∫(dx^2/1+x^2)=1/2∫(du/1+u)=1/2∫[d(u+1)/1+u]
我想问的是∫(x/1+x^2)dx=1/2∫(dx^2/1+x^2)这一步怎么计算出来的,还有为什么1/2∫(du/1+u)=1/2∫[d(u+1)/1+u]中的du=d(u+1)?
越详细越好,谢谢。
把复合函数的微分法反过来用于求不定积分,利用中间变量的代换,得到复合函数的积分法,称为换元积分法,简称换元法,换元法通常分为两类:
第一类换元法:
设f(u)具有原函数F(U),即。
F'(U)=f(u),∫f(u)du=F(U)+C。
如果u是中间变量,u=φ(x),且设φ(x)可微,那么,根据复合函数微分法有:
dF(φ(x))=f(φ(x))φ'(x)dx。
从而根据不定积分的定义就得:
∫f[φ(x)]φ'(x)dx=F[φ(x)]+C=[∫f(u)du] (u=φ(x))。
于是有下述定理:
定理1:设f(u)具有原函数,u=φ(x)可导,则有换元公式:
∫f[φ(x)]φ'(x)dx=[∫f(u)du] (u=φ(x)) (1)。
将所求积分∫φ(x)dx表成∫f[φ(x)]φ'(x)dx就是凑微分过程,然后就是换元,也就是将积分变量x换成u;最后是求原函数,实际上就是∫f[φ(x)]φ'(x)dx不好求。
而∫f(u)du好求,所以先求出后一个不定积分;最后再将变量u换成x。当熟练掌握这一方法后,可以不必引入变量u。
由此定理可见,虽然∫f[φ(x)]φ'(x)dx是一个整体的记号,但从形式上看,被积表达式中的dx也可当作变量x的微分来对待,从而微分来对待。
从而微分等式φ'(x)dx=du可以方便地应用到被积表达式中来,我们在上节第一题目中已经这样用了,那里把积分∫F'(x)dx,记作∫dF(x),就是按微分F'(x)dx=dF(x),把被积表达式F'(x)dx。记作dF(x)
设要求∫g(x)dx,如果函数g(x)可以化为g(x)=f[φ(x)]φ'(x)的形式,那么:
∫g(x)dx=∫f[φ(x)]φ'(x)dx=[∫f(u)du] (u=φ(x))。
这样,函数g(x)的积分即转化为函数f(u)的积分,如果能求得f(u)的原函数,那么也就得到了g(x)的原函数。
第二类换元法:
上面介绍的第一类换元法是通过变量代换u=φ(x),将积分∫f[φ(x)]φ'(x)dx化为积分∫f(u)du。
下面将介绍的第二类换元法是,适当地选择变量代换x=φ(t),将积分∫f(x)dx化为积分,∫f[φ(t)]φ'(t)dt,这是另一种形式的变量代换,换元公式可表达为:
∫f(x)dx=∫f[φ(t)]φ'(t)dt。
这公式的成立是需要一定条件的,首先,等式右边的不定积分要存在,即∫f[φ(t)]φ'(t)dt有原函数;其次,∫f[φ(t)]φ'(t)dt求出后必须用x=φ(t)的反函数t=φ^(-1)(x)代回去。
为了保证这反函数存在而且是可导的,我们假定直接函数x=φ(t)在t的某一个区间(这区间和所考虑的x的积分区间相对应)上是单调的,可导的,并且φ'(t)=0。
归纳上述,给出下面的定理:
定理2 设x=φ(t)是单调的,可导的函数,并且φ'(t)≠0.又设f[φ(t)]φ'(t)具有原函数,则有换元公式。
∫f(x)dx={∫f[φ(t)]φ'(t)dt} (t=φ^(-1)(x))(2)。
其中φ^(-1)(x)是x=φ(t)的反函数。
注意:与第一类换元积分法相反,第二类换元积分法就是由于积分∫f(x)dx不便计算,而改求∫f[φ(t)]φ'(t)dt。关键是:如何选择变量替换。
扩展资料:
不定积分的4种积分方法:
1、凑微分法:把被积分式凑成某个函数的微分的积分方法。要求:熟练掌握基本积分公式。对于复杂式子可以将其分为两个部分,对复杂部分求导,结果与简单部分比较。
2、换元法:包括整体换元,部分换元。还可分三角函数换元,指数换元,对数换元,倒数换元等等。须灵活运用。注意:dx须求导。
3、分部积分法:利用两个相乘函数的微分公式,将所要求的积分转化为另外较为简单的函数的积分。注意:对u和v要适当选择。
4、有理函数积分法:
有理函数是指由两个多项式函数的商所表示的函数,由多项式的除法可知,假分式总能化为一个多项式与一个真分式之和。
参考资料来源:百度百科-换元积分法
你看看我的分析对不dx^2=(x^2)’dx分析df(x)/dx=f(x)'一样只不过f(x)换成了x^2.
如果我分析对的话du=d(u+1)我也明白了。
对
d(x²) = (x²)' dx = (2x) dx,,两边除以2得
==> (1/2) d(x²) = x dx 或 x dx = d(x²/2)
du = d(u ± 1) = d(u ± 1000) = d(u ± 任意常数)
但
du = d(Ku/K) = (1/K) d(Ku) = (1/K) d(Ku + N)
或du = d(u/K • K) = K d(u/K) = K d(u/K + M)
加减常数可任意加上,但乘以常数需要抵消 !
你看看我的分析对不dx^2=(x^2)’dx分析df(x)/dx=f(x)'一样只不过f(x)换成了x^2.
如果我分析对的话du=d(u+1)我也明白了。
对的
追问d(u+1)/u+1=[1/(u+1)]d(u+1)这个成立么
不定积分如何换元积分?
不定积分的换元积分法方法如下:一、第一类换元法 (即凑微分法)通过凑微分,最后依托于某个积分公式。进而求得原不定积分。二、第二类换元法 1、第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。常用的换...
不定积分怎样换元积分
1、公式法 例如∫x^ndx=x^(n+1)\/(n+1)+C ∫dx\/x=lnx+C ∫cosxdx=sinx 等不定积分公式都应牢记,对于基本函数可直接求出原函数。2、换元法 对于∫f[g(x)]dx可令t=g(x),得到x=w(t),计算∫f[g(x)]dx等价于计算∫f(t)w'(t)dt。 例如计算∫e^(-2x)dx时令t=-2x,则x=-...
不定积分怎么换元?
不定积分的换元法与定积分的换元法只有一个区别:不定积分的换元法最后必须换回原来的变量,而定积分代换时上下限要做相应的变化,最后不必换回原来的变量。不定积分换元法的解题方法:令g为一个可导函数且函数f为函数F的导数,则∫f(g(x))g'(x)=F(g(x))+C. 令u=g(x), 因此du=g'(...
不定积分换元法
把复合函数的微分法反过来用于求不定积分,利用中间变量的代换,得到复合函数的积分法,称为换元积分法,简称换元法,换元法通常分为两类:第一类换元法:设f(u)具有原函数F(U),即。F'(U)=f(u),∫f(u)du=F(U)+C。如果u是中间变量,u=φ(x),且设φ(x)可微,那么,根据复合函数微分...
怎么求不定积分的换元法?
换元法则计算x=1+sinu ∫x√(1-(x-1)²)dx =∫(1+sinu)cos²u =∫(cos2u+1)\/2-∫cos²udcosu =sin2u\/4+u\/2-cos³u\/3+C
不定积分换元dx怎么变
换元积分法,简称换元法,是求不定积分的一种重要方法。换元法分为两类:第一类换元法和第二类换元法。第一类换元法的定理指出,如果复合函数f(u)具有原函数F(U),且u=φ(x)可导,则有换元公式:∫f[φ(x)]φ'(x)dx=[∫f(u)du] (u=φ(x))。在求解时,将所求积分表成∫f[φ(x...
换元法求不定积分
换元积分法是求不定积分的技巧,分为两类:第一类与第二类。第一类换元法又称凑微分法,适用于通过凑微分后,利用特定积分公式求解。第二类换元法则要求变换式可逆,且在相应区间内,Φ(x)为单调函数。第二类换元法常用于处理根式类被积函数,尤其在面对高次二项式时,此法可避免复杂展开,简化求解...
不定积分可以用换元法和分部积分法吗
在不定积分的求解过程中,换元法与分部积分法的使用是灵活多变的。但当遇到特定的积分难题,例如利用留数计算积分,此方法仅针对定积分有效,无法直接应用于不定积分。同理,对于涉及正态分布函数的积分问题,通过将问题转化为极坐标下的广义积分(定积分形式),方能得到解答。在此基础上,对于不定积分...
不定积分换元法怎么换元
不定积分换元法是一种通过引入中间变量,将原函数转化为新的函数,从而简化求解过程的方法。这种方法特别适用于那些直接求解较为复杂的函数。具体步骤如下:1. 确定需要换元的函数。比如我们有一个函数f(x)=x^2+3x+2。2. 选择一个合适的中间变量。这里我们可以选择t=x+1。3. 将原函数中的x用t...
怎样利用换元法求不定积分?
求不定积分的方法:第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来)。分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘...