①如果多项式的各项有公因式,那么先提公因式; ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解; ④分解因式,必须进行到每一个多项式因式都不能再分解为止。 也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要合适。” 几道例题 1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2. 解:原式=(1+y)^2+2(1+y)x^2(1-y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(补项) =[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(完全平方) =[(1+y)+x^2(1-y)]^2-(2x)^2 =[(1+y)+x^2(1-y)+2x][(1+y)+x^2(1-y)-2x] =(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1) =[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)] =(x+1)(x+1-xy+y)(x-1)(x-1-xy-y). 2.求证:对于任何实数x,y,下式的值都不会为33: x^5+3x^4y-5x^3y^2-15x^2y^3+4xy^4+12y^5. 解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5) =x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y) =(x+3y)(x^4-5x^2y^2+4y^4) =(x+3y)(x^2-4y^2)(x^2-y^2) =(x+3y)(x+y)(x-y)(x+2y)(x-2y). (分解因式的过程也可以参看右图。) 当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立。 3..△ABC的三边a、b、c有如下关系式:-c^2+a^2+2ab-2bc=0,求证:这个三角形是等腰三角形。 分析:此题实质上是对关系式的等号左边的多项式进行因式分解。 证明:∵-c^2+a^2+2ab-2bc=0, ∴(a+c)(a-c)+2b(a-c)=0. ∴(a-c)(a+2b+c)=0. ∵a、b、c是△ABC的三条边, ∴a+2b+c>0. ∴a-c=0, 即a=c,△ABC为等腰三角形。 4.把-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)分解因式。 解:-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1) =-6x^n×y^(n-1)(2x^n×y-3x^2y^2+1).因式分解中的四个注意,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。 现举下例 可供参考 例1 把-a2-b2+2ab+4分解因式。 解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-(a-b+2)(a-b-2) 这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。防止学生出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误 例2把-12x2nyn+18xn+2yn+1-6xnyn-1分解因式。解:-12x2nyn+18xn+2yn+1-6xnyn-1=-6xnyn-1(2xny-3x2y2+1) 这里的“公”指“公因式”。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。 分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。防止学生出现诸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y2(x2+1)(4x2-9)的错误。 考试时应注意: 在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到整数! 由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”等是一脉相承的。 编辑本段应用 1、 应用于多项式除法。 2、 应用于高次方程的求根。 3、 应用于分式的通分与约分 顺带一提,梅森合数分解已经取得一些微不足道的进展: 1,p=4r+3,如果8r+7也是素数,则:(8r+7)|(2^P-1)。即(2p+1)|(2^P-1); .例如: 23|(2^11-1);;11=4×2+3; 47|(2^23-1);;23=4×5+3; 167|(2^83-1);,,,.83=4×20+3; 。。。。 2,,p=2^n×3^2+1,,则(6p+1)|(2^P-1), 例如:223|(2^37-1);;37=2×2×3×3+1; 439|(2^73-1);73=2×2×2×3×3+1; 3463|(2^577-1);;577=2×2×2×2×2×2×3×3+1; ,,,。 3,p=2^n×3^m×5^s-1,则(8p+1)|(2^P-1); .例如;233|(2^29-1);29=2×3×5-1; ;1433|(2^179-1);179=2×2×3×3×5-1; 1913|(2^239-1);239=2×2×2×2×3×5-1; ,,,。 还有一些梅森数分解取得进展,不再一一叙述
温馨提示:内容为网友见解,仅供参考
初二数学因式分解怎么做?详细过程详细方法,拜托了各位
①如果多项式的各项有公因式,那么先提公因式; ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解; ④分解因式,必须进行到每一个多项式因式都不能再分解为止。 也可以用一句话来概括:“先看有无公因式,再看能否...
求解~详细过程~因式分解~拜托
1原式=x^2(x^2-2x-35)=x^2(x-7)(x+5)3、原式=(5x-10y)^2-(4y-2x)^2 =(5x-10y+4y-2x)(5x-10y-4y+2x)=(3x-6y)(7x-14y)=21(x-2y)^2 5、原式=x(x^4-1)=x(x^2+1)(x^2-1)=x(x^2+1)(x-1)(x+1)7、原式=(a-b)x^2-(a-b)x-(a-b)=(a-b)(...
因式分解的方法
要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m +5n-mn-5m 解:m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n)=m...
初中 因式分解 要过程拜托了
回答:解:原式=4x²-y²-4x²+4xy-y² =-2y²+4xy =-2y(y+2x)
因式分解 忘记怎么做了---一定给过程啊 拜托了 分解题一:2X² - 1...
解:2X²-11X+12 十字相乘法分解 =(X-4)(2X-3)6X²-7X-3 十字相乘法分解 =(2X-3)(3X+1)
求数学公式——因式分解
我知道的有三个 1.平方差公式:a2-b2=(a+b)(a-b)2.完全平方和:a2+2ab+b2=(a+b)2 3.完全平方差:a2-2ab+b2=(a-b)2 字母后面是平方!!!那个百度上打不出来。。。你知道吧???我知道的只有这些 不要说我无知哦!!
初二上因式分解带过程的,10到就好拜托各位数学高手噢噢噢噢~~~_百度...
x2-100=x2-10x+10x-10x10=(x-10)(x+10)x2+13x-90=x2-5x+18x-5x18=(x-5)(x+18)x2-16x-80=x2-20x+4x-20x4=(x-20)(x+4)x2-9x-80=x2-16x+5x-16x5=(x-16)(x+5)x2+42x+80=x2+2x+40x+2x40=(x+2)(x+40)x2+38x-80=x2-2x+40x-2x40=(x-2)(x+40)x...
数学因式分解。啊。拜托了。第一题X^2-Y^2-5X-5Y。 第二题x^2-y^2...
1.原式等于=(x+y)(x-y)-5(x+y)=(x+y)(x-y-5)2.原式等于=x^2-(y+z)^2=(x+y+z)(x-y-z)3原式等于=xy^2+yz^2-(y+z)(y^2-yz+z^2)=(z+y)^2y-y^3-(y+z)(y^2+z^2-yz)=-z^3+2y^2z=z(2y^2-z^2)=z(根号2y+z)(根号2y-z)4.原式等于=(2x-5...
因式分解,不用十字相乘法,怎么做,拜托拜托
回答:好像只能用十字相乘法
因式分解法要怎么提取公因式呀!急急急急急。。。
小节:1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或...