∞ ∑ 1/n(n+1)(n+2) n=1 ∞ ∑ n的n+(1/n)次方除以n+(1/n)的n 次方 n=1

这是两道题 ,第一道求和 。第二道判断收敛性 。前面的无穷和后面的n=1都应该在那个求和符号下面。。不好意思哈

第1个回答  2012-01-19
解法一:
幂级数求和:
f(x)=∑ x^n/n(n+1)(n+2)
=∑(n+1-n)x^n/n(n+1)(n+2)
=∑x^n/n(n+2)-x^n/(n+1)(n+2)
=∑0.5x^n(1/n-1/(n+2))-(x^n/(n+1)-x^n/(n+2))
=0.5∑x^n/n-∑x^n/(n+1)+0.5∑x^n/(n+2)。。。1
其中:
A、∑x^n/n
=∫(0,x)(∑x^n/n)'dx
=∫(0,x)∑x^(n-1)dx
=∫(0,x)1/(1-x)dx
=-ln(1-x)
B、∑x^n/(n+1)
=(1/x)*∑x^(n+1)/(n+1)
=(1/x)*∫(0,x)(∑x^(n+1)/(n+1))'dx
=(1/x)*∫(0,x)∑x^ndx
=(1/x)*∫(0,x)(x/(1-x))dx
=(1/x)*(-x-ln(1-x))
=-1-(ln(1-x))/x
C、∑x^n/(n+2)
=(1/x^2)∑x^(n+2)/(n+2)
=(1/x^2)*∫(0,x)(∑x^(n+2)/(n+2))'dx
=(1/x^2)*∫(0,x)(∑x^(n+1)dx
=(1/x^2)*∫(0,x)x^2/(1-x)dx
=(1/x^2)*∫(0,x)-1-x+1/(1-x)dx
=(1/x^2)*(-x-0.5x^2-ln(1-x))
=-0.5-1/x-(ln(1-x))/x^2
将ABC代入“1”,
并令x=1,求出f(x)即可
代入得到:原式=0.5*0-(-1)+0.5*(-1.5)=0.25

解法二:
拆项相消法:
1/n(n+1)(n+2)=0.5(1/n(n+1)-1/(n+2)(n+1))
=>
Sn=∑0.5(1/n(n+1)-1/(n+2)(n+1))
=0.5(1/(1*2)-1/(n+1)(n+2))
n极限时,Sn=0.5*1/2=0.25

解法三:
待定系数法:
1/n(n+1)(n+2)=0.5/n-1/(n+1)+0.5/(n+2)
观察到三者系数之和为零(0.5-1+0.5)
累加可有消去性质
=>
Sn=(0.5*1-1/2+0.5*1/3)+(0.5*0.5-1/3+0.5*1/4)+(0.5*1/3-1/4+0.5*1/5)+...+(0.5/n-1/(n+1)+0.5/(n+2))
=0.25-1/(n+1)-0.5/(n+2)
n极限时
Sn=0.25

解法四:
公式法:
∑1/n(n+1)...(n+m)
=lim:(1/m)*(1/m!-1/(n+1)(n+2)...(n+m))
=1/(m*m!)
令m=2
=>
原式=1/4

由于分子分母都有幂次形式
故考虑用根值法判断敛散性:
lim:n√An
=lim:(An)^(1/n)
=lim:n^((n+1/n)/n)/(n+1/n)
=lim:n^(1+1/n^2)/(n+1/n)
=lim:n/(n+1/n)*lim:n^(1/n^2)/(n+1/n)
=lim:n^(1/n^2)/(n+1/n)
=0<1
=>
收敛本回答被提问者采纳
第2个回答  2012-01-19
6646

...n=1 ∞∑ n的n+(1\/n)次方除以n+(1\/n)的n 次方 n=1
=(1\/x)*∑x^(n+1)\/(n+1)=(1\/x)*∫(0,x)(∑x^(n+1)\/(n+1))'dx =(1\/x)*∫(0,x)∑x^ndx =(1\/x)*∫(0,x)(x\/(1-x))dx =(1\/x)*(-x-ln(1-x))=-1-(ln(1-x))\/x C、∑x^n\/(n+2)=(1\/x^2)∑x^(n+2)\/(n+2)=(1\/x^2)*∫(0,x)(∑x^...

把极限lim(n→∞)[1\/(n+1)+1\/(n+2)+……+1\/(n+n)]表示为定积分_百度...
∫{f(x)dx,[0,1]} 而f(x[k])*(1\/n)=1\/(n+k),通项相等,也就是说你的式子等于上面的和式。于是 lim[1\/(n+1)+1\/(n+2)+1\/(n+3)+……1\/(n+n),n->∞]=∫{f(x)dx,[0,1]} =∫{1\/(1+x)dx,[0,1]} =ln(1+x)|[0,1]=ln(1+1)-ln(1+0)=ln2 “...

求极限lim(n→∞)1\/(n²+n+1)+2\/(n²+n+2)+...+n\/(n²+n+n...
求极限lim(n→∞)1\/(n²+n+1)+2\/(n²+n+2)+...+n\/(n²+n+n) lim(n→∞)1\/(n²+n+1)+2\/(n²+n+2)+...+n\/(n²+n+n)...lim(n→∞)1\/(n²+n+1)+2\/(n²+n+2)+...+n\/(n²+n+n) 展开 分享 微信扫一扫 新浪微博 QQ空间 举报 浏览172 次 1个回答 #...

lim(n→∞)(1\/(n+1)+1\/(n+2)+…+1\/(n+n))
原式=lim(n->∞)[(1\/n)\/(1+1\/n)+(1\/n)\/(1+2\/n)+...+(1\/n)\/(1+(n-1)\/n)+(1\/n)\/(1+n\/n)]=lim(n->∞){(1\/n)[1\/(1+1\/n)+1\/(1+2\/n)+...+1\/(1+(n-1)\/n)+1\/(1+n\/n)]} =∫<0,1>dx\/(1+x) (根据定积分定义得)=ln(1+x)│<0,1> ...

n趋近于无穷大,求limn(1\/(n2+1)+1\/(n2+2)+...+1\/(n2+n)=
当n趋近于无穷大时,(ln n)\/n是∞\/∞型,可以用洛必达法则:lim(ln n)\/n = lim (ln n)'\/(n)' =lim (1\/n)\/1 =lim(1\/n)当n->∞时,1\/n->0. 所以 limn^(1\/n) = lim[e^((ln n)\/n)] = e^0 =1 数学定义 设函数f(x)在x0的某一去心邻域内有定义(或|x|大于某一...

n趋向于无穷,求lim (1\/n) [(n+1)+(n+2)+...+(n+n)]^1\/n
将极限转化为定积分求解:以上,请采纳。

...n趋向于无穷(1\/n)*n次方根下(n+1)(n+2)⋯(n+n)
记原式=P P=[(n+1)(n+2)(n+3).(n+n)\/n^n]^(1\/n)={[(n+1)\/n][(n+2)\/n][(n+3)\/n].[(n+n)\/n]}^(1\/n)=[(1+1\/n)(1+2\/n)(1+3\/n).(1+n\/n)]^(1\/n)取自然对数 lnP=(1\/n)[ln(1+1\/n)+ln(1+2\/n)+ln(1+3\/n)+.+ln(1+n\/n)]设f(x)...

求数列极限lim n→∞(1+(1\/n)+(1\/n^2))^n ? 要详细的,另外问题补充这句...
简单的做法是直接把高阶无穷小去掉。(1+(1\/n)+(1\/n^2))^n =(1+(1\/n))^n =e 认真点就是把1\/n+1\/n^2通分,分子化成1 (1+n)\/n^2=1\/(n²\/(n+1))再把后边改换一下形式,最后结果还是e^1=e 不能在数列形式下直接用洛必达法则,因为对于离散变量n∈N+,是无法求导...

级数求和∑1\/n(n+1) (高数问题) n取1到 无穷,求解思路
∑1\/n(n+1) = 1\/(1*2) + 1\/(2*3) + 1\/(3*4) + ... + 1\/(n(n+1))= (1\/1 - 1\/2) + (1\/2 - 1\/3) + (1\/3 - 1\/4) + ... + (1\/n - 1\/(n+1) )去掉括号,除了第一项和最后一项抵消 = 1 - 1\/(n+1)n->∞, 1\/(n+1) ->0 lim(n->∞)...

...1\/(n2+n+1)+2\/(n2+n+2)+……+n\/(n2+n+n)等于? 注:n2=n的平方_百度...
1\/2.用夹逼定理。该等式肯定小于1+2+...+n\/n2+n+1。分母变小了。即把所有分母换成第一项的分母,分子不变。同时肯定大于1+2+...+n\/n2+n+n.分母变大了。即把所有分母换成最后一项的分母,分子不变。但是二者的极限都是1\/2.所以最后结果为1\/2。

相似回答