已知数列{an},Tn为其前n项和,且Tn+12an=1.(1)求a1,a2,a3,并猜想{an}的通项公式;(2)用数学归纳法证明.
数列{an}的前n项和是Sn,且Sn+12an=1.(1)求数列{an}的通项公式;(2)记b...
(1)∵Sn+12an=1,∴a1+12a1=1,解得a1=23.23+a2+12a2=1,解得a2=29,23+29+a3+12a3=1,解得a3=227.由此猜想an=23n.用数学归纳法证明:①当n=1时,a1=23,成立;②假设n=k时成立,即ak=23k,则当n=k+1时,23+232+…+23k+ak+1+12ak+1 =1,∴32ak+1=1?23(1...
...=a1?a2…?an.(1)若Tn=n2,求数列{an}的通项公式;(2)若数列{an}满...
1)2,∴an=1,n=1n2(n?1)2,n≥2 …(4分)(2)当n=1时,a1=T1=12(1-a1),所以a1=13,当n≥2时,2Tn=1-an=1-TnTn?1,所以1Tn-1Tn?1=2,数列{1Tn}为等差数列 …(8分)1Tn=3+2(n-1)=2n+1,Tn=12n+1,an=1-2Tn=2n?12n+1 …(10分)(3)(Ⅰ)...
...12an+1(n∈N*).(1)求a2,a3.(2)求数列{an}的通项an;(3)求数_百度知...
(1)令n=1,得到S1=a1=12a2,由a1=1,得到a2=2,令n=2,得到S2=a1+a2=12a3,则a3=2(1+2)=6;(3分)(2)∵an+1=2Sn,∴Sn+1-Sn=2Sn,∴Sn+1Sn=3.又∵S1=a1=1,∴数列Sn是首项为1,公比为3的等比数列,Sn=3n-1(n∈N*).(5分)当n≥2时,an=2Sn-1=2?3n-...
已知数列{an},其前n项和为Sn,若a2=4,2Sn=an(n+1).(Ⅰ)求a1、a3;(Ⅱ...
(3分)(Ⅱ)解:∵2Sn=an?(n+1),∴n≥2,2Sn-1=an-1?n,…(5分)∴2an=2(Sn-Sn-1)=(n+1)an-nan-1,∴anan?1=nn?1.…(7分)∴an=anan?1×an?1an?2×…×a2a1=nn?1×n?1n?2×…×21×2=2n,∴an=2n.…(9分)(III)证明:∵1an2+an+12=14n2+4...
...Sn=12(an2+an),an>0.(1)求数列{an}的通项公式;(2)若bn=n2n?1,_百 ...
an+an-1)(an-an-1-1)=0,又an>0,∴an-an-1=1.当n=1时,a12+a1?2a1=0,∴a1=1.∴an=1+(n-1)=n;(2)∵bn=n2n?1,∴Tn=1?(12)0+2?(12)1+…+n?(12)n?1.∴12Tn=1?(12)1+2?(12)2+…+n?(12)n,故12Tn=1+12+…+(12)n?1?n?(12)n....
...且2a1,a2,a3+1成等比数列.(1)求{an}的通项公式;(2
解答:(1)解:设公差为d,则∵S3=12,,即a1+a2+a3=12,∴3a2=12,∴a2=4,又∵2a1,a2,a3+1成等比数列,∴a22=2(a2-d)(a2+d+1),解得d=3或d=-4(舍去),∴an=a2+(n-2)d=3n-2;---(6分)(2)证明:bn=an3n=(3n-2)?13n,∴Tn=1×13+4×132+…+...
...项an满足Sn=12?12an.(1)求数列{an}的通项公式;(2)设f(x)=log3x...
(1)n=1时,a1=S1=12-12a1,∴a1=13(1分)n≥2时,an=Sn-Sn-1=12-12an-12+12a n-1,∴an=13an-1,即数列{an}是首项为 13,公比为 13的等比数列 (3分)故an=( 13)n (4分)(2)由已知可得:f(an)=-n,则bn=f(a1)+f(a2)+…+f(an)=-1-2-…-...
某些数列前n项和怎么算附带举例
例题1:设等差数列{an},公差为d,求证:{an}的前n项和Sn=n(a1+an)\/2解:Sn=a1+a2+a3+...+an ①倒序得:Sn=an+an-1+an-2+…+a1 ②①+②得:2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+…+(an+a1)又∵a1+an=a2+an-1=a3+an-2=…=an+a1∴2Sn=n(a2+an) Sn=n(a1+an)\/2点拨:由推...
...+1)2,n∈N*且a2=a,(1)求数列{an} 的通项公式an.(2)若a=3,Tn=a1a2...
6分)而n=1时S1=a1+12=a1,∴a1=1,又a2=a=a1+d∴{an} 为等差数列,公式d=a-1故an=a1+(n-1)d=(n-1)(a-1)+1;(8分)(2)∵a=3∴an=2(n-1)+1=2n-1(10分)故T100=a1a2-a2a3+a100a101=a2(a1-a3)+a4(a3-a5)++a100(a99-a101)=-4(a2+a4++a100)...
已知等差数列{an}前n项和为Sn且a2+a3=10,S6=42(1)求{an}通项公式.(2...
(1)设等差数列{an}的公差为d,则2a1+3d=106a1+6×52d=42,解得a1=2d=2,所以数列{an}的通项公式为:an=2+(n-1)×2=2n.(2)由(1)知an=2n,所以,1bn=a1+a2+…an=(2+2n)n2=n(n+1),所以,bn=1n(n+1)=(1n-1n+1),所以,Tn=b1+b2+…bn=(1-12)+(...