数列{an}的前n项和是Sn,且Sn+12an=1.(1)求数列{an}的通项公式;(2)记bn=log3a2n4,数列{1bn?bn+2

数列{an}的前n项和是Sn,且Sn+12an=1.(1)求数列{an}的通项公式;(2)记bn=log3a2n4,数列{1bn?bn+2}的前n项和为Tn,证明:Tn<316.

无其他回答

数列{an}的前n项和是Sn,且Sn+12an=1.(1)求数列{an}的通项公式;(2)记b...
(1)∵Sn+12an=1,∴a1+12a1=1,解得a1=23.23+a2+12a2=1,解得a2=29,23+29+a3+12a3=1,解得a3=227.由此猜想an=23n.用数学归纳法证明:①当n=1时,a1=23,成立;②假设n=k时成立,即ak=23k,则当n=k+1时,23+232+…+23k+ak+1+12ak+1 =1,∴32ak+1=1?23(1...

...Sn=12(an2+an),an>0.(1)求数列{an}的通项公式;(2)若bn=n2n?1,_百 ...
(1)由Sn=12(an2+an),得an2+an?2Sn=0,当n≥2时,an?12+an?1?2Sn?1=0,∴(an+an-1)(an-an-1-1)=0,又an>0,∴an-an-1=1.当n=1时,a12+a1?2a1=0,∴a1=1.∴an=1+(n-1)=n;(2)∵bn=n2n?1,∴Tn=1?(12)0+2?(12)1+…+n?(12)n?1.∴...

...项an满足Sn=12?12an.(1)求数列{an}的通项公式;(2)设f(x)=log3x...
(1)n=1时,a1=S1=12-12a1,∴a1=13(1分)n≥2时,an=Sn-Sn-1=12-12an-12+12a n-1,∴an=13an-1,即数列{an}是首项为 13,公比为 13的等比数列 (3分)故an=( 13)n (4分)(2)由已知可得:f(an)=-n,则bn=f(a1)+f(a2)+…+f(an)=-1-2-…-n...

...+1=Sn+n(n+1)且a1=2.(1)求数列{an}的通项公式;(2)令Tn=Sn2n_百度知...
(1)由题意可知:nan+1=Sn+n(n+1)∴(n-1)an=Sn-1+(n-1)n两式相减可得:an+1-an=2所以数列{an}为以2为首项以2为公差的等差数列.∴an=2+(n-1)?2=2n∴数列{an}的通项公式:an=2n,n∈N*(2)由(1)知:Sn=n(2+2n)2=n2+n∴Tn=Sn2n=n2+n2n,∴T1=22...

...且Sn=n2+2n,(1)求数列{an}的通项公式;(2)令bn=1Sn,且数列{bn}的前...
(1)∵数列{an}的前n项和为Sn,且Sn=n2+2n,n=1时,a1=S1=3,n≥2时,an=Sn-Sn-1=(n2+2n)-[(n-1)2+2(n-1)]=2n+1,n=1时也成立,∴an=2n+1.(2)bn=1Sn=1n(n+2)=12(1n?1n+2),∴Tn=12[(1?13)+(12?14)+(13?15)+…(1n?2?1n)+(1n?1?1n+1)...

...Sn=2-an,n=1,2,3,….(1)求数列{an}的通项公式;(2)若数列{bn}_百度...
(1)因为n=1时,a1+S1=a1+a1=2,所以a1=1.因为Sn=2-an,即an+Sn=2,所以an+1+Sn+1=2.两式相减:an+1-an+Sn+1-Sn=0,即an+1-an+an+1=0,故有2an+1=an.因为an≠0,所以an+1an=12( n∈N*).所以数列{an}是首项a1=1,公比为12的等比数列,an=(12)n?1( n...

数列{an}的前n项和为Sn,且Sn+an=1,数列{bn}满足b1=4,bn+1=3bn-2;(1...
(1)①当n=1时,a1+S1=1∴a1=12②当n≥2时,an=Sn-Sn-1=(1-an)-(1-an-1)=an-1-an,∴an=12an-1∴数列{an}是以a1=12为首项,公比为12的等比数列;∴an=12?(12)n-1=(12)n∵bn+1=3bn-2∴bn+1-1=3(bn-1)又∵b1-1=3∴{bn-1}是以3为首项,3为公比的...

...=2an-2(n∈N*).(1)求数列{an}的通项公式;(2)令bn=n?an+log 12an...
(1)当n=1时,a1=2a1-2,解得a1=2;当n≥2时,an=Sn-Sn-1=2an-2-(2an-1-2)=2an-2an-1,∴an=2an-1,故数列{an}是以a1=2为首项,2为公比的等比数列,故an=2?2n?1=2n.(2)由(1)得,bn=n?2n+log122n=n?2n-n,∴Tn=b1+b2+…+bn=(2+2?22+3?23+…+...

...项和,且对任意n∈N*都有Sn+12an=12(Ⅰ)求数列{an}的通项公式...
1=12,∴an+12an-12an?1=0,∴an=13an?1.∴数列{an}是等比数列,∴an=(13)n.(II)∵an=(13)n,∴log3an=log3(13)n=-n.∴bn=log3a1+log3a2+log3a3+…+log3an=-(1+2+…+n)=-n(n+1)2.∴1bn=-2(1n?1n+1).∴数列{1bn}的前n项和=-2[(1?12)+(12?13...

...且Sn=n2+n+1(n∈N+).(1)求数列{an}的通项公式;(2)设函数g(x)=log2...
(1分)当n≥2时,an=Sn-Sn-1=(n2+n+1)-[(n-1)2+(n-1)+1]=2n,当n=1时,2n=2≠a1,∴an=3,n=12n.n≥2 …(5分)(2)∵{g(bn)}是首项为1,公差为1的等差数列,∴g(bn)=n,∵g(x)=log2x,∴log2bn=n,∴bn=2n,∴T1=a1?b1=6 …(7分)...

相似回答
大家正在搜