数列{an}的前n项和为Sn,且Sn+an=1,数列{bn}满足b1=4,bn+1=3bn-2;(1)求数列{an}和{bn}的通项公式;

数列{an}的前n项和为Sn,且Sn+an=1,数列{bn}满足b1=4,bn+1=3bn-2;(1)求数列{an}和{bn}的通项公式;(2)设数列{cn}满足cn=anlog3(b2n-1-1),其前n项和为Tn,求Tn.

无其他回答

数列{an}的前n项和为Sn,且Sn+an=1,数列{bn}满足b1=4,bn+1=3bn-2;(1...
(1)①当n=1时,a1+S1=1∴a1=12②当n≥2时,an=Sn-Sn-1=(1-an)-(1-an-1)=an-1-an,∴an=12an-1∴数列{an}是以a1=12为首项,公比为12的等比数列;∴an=12?(12)n-1=(12)n∵bn+1=3bn-2∴bn+1-1=3(bn-1)又∵b1-1=3∴{bn-1}是以3为首项,3为公比的...

已知数列{an}的前n项和为Sn,且a1=3,Sn+1=2Sn+3-n,数列{bn}满足b1=3...
1=2,∴{an-1}是以a1-1=2为首项,2为公比的等比数列,∴an-1=2×2n-1=2n,∴an=2n+1.(II)由b1=3,bn+1=λbn+an-1,得b1=3,bn+1=λbn+2n.b2=3λ+2,b3=3λ2+2λ+4,①若数列{bn}为等差数列,则2b2=b1+b3,得3λ2-4λ+3=0,∵△=(-4)2-4×3×3=-20...

设数列{an}的前n项和为Sn,且满足Sn=2-an,n∈N+,数列{bn}满足b1=1,且b...
所以数列{an}是以1\/2为公比,1为首项的等比数列 所以an=(1\/2)^(n-1)当n=1时适合an=(1\/2)^(n-1)所以数列{an}的通项是an=(1\/2)^(n-1)由b(n+1)=bn+an得 b(n+1)-bn=(1\/2)^(n-1)于是有 b2-b1=1 b3-b2=1\/2 b4-b3=(1\/2)²...bn-b(n-1)=(1\/2)^(...

数列{an}的前n项和为Sn,且an是Sn和1的等差中项,等差数列{bn}满足b1=a...
解答:(I)解:∵an是Sn和1的等差中项,∴Sn=2an-1,当n=1时,a1=S1=2a1-1,∴a1=1,当n≥2时,an=Sn-Sn-1=(2an-1)=2an-2an-1,∴an=2an-1,即anan?1=2,(3分)∴数列{an}是以a1=1为首项,2为公比的等比数列,∴an=2n?1,Sn=2n-1,(5分)设{bn}的公差为...

...且an+Sn=1(n∈N*),数列{bn}满足b1=3,点(bn,bn+1)在直线y=4x-3上...
(1)解:∵数列{an}的前项和为Sn,且an+Sn=1(n∈N*),∴a1=S1=12,Sn=1-an,①,Sn-1=1-an-1,②①-②,得:an=Sn-Sn-1=an-1-an,∴an=12an?1,∴{an}是首项为12,公比为12的等比数列,∴an=(12)n-1.∵数列{bn}满足b1=3,点(bn,bn+1)在直线y=4x-3上,...

设数列{an}的前n项和为Sn,且Sn=2n?1.数列{bn}满足b1=2,bn+1-2bn=8a...
(Ⅰ)解:当n=1时 a1=S1=21?1=1;当n≥2时 an=Sn?Sn?1=(2n?1)?(2n?1?1)=2n?1,因为a1=1适合通项公式an=2n?1.所以 an=2n?1(n∈N*). …(5分)(Ⅱ)证明:因为 bn+1-2bn=8an,所以 bn+1?2bn=2n+2,即bn+12n+1?bn2n=2.所以{bn2n}是首项为b1...

已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n∈N*).(1)证明:数列{an+...
(1)证明:n=1时,2a1=S1+1,∴a1=1.由题意得2an=Sn+n,2an+1=Sn+1+(n+1),两式相减得2an+1-2an=an+1+1,即an+1=2an+1.于是an+1+1=2(an+1),又a1+1=2.∴数列{an+1}为首项为2,公比为2的等比数列,∴an+1=2?2n-1=2n,即an=2n-1;(2)解:由(1...

设数列{an}的前n项和为Sn,且Sn=4an-3,n∈N*.(1)求数列{an}的通项公...
1(2)由an=(43)n?1,bn+1=an+bn,即bn+1-bn=an=(43)n?1于是当n≥2时,bn=b1+b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)=2+1+43+(43)2+…+(43)n?2=2+1?(43)n?11?43=3×(43)n?1-1而b1=2满足n≥2时,满足bn的形式,所以{bn}的通项公式bn=3×(43)n?1-1...

设数列{an}的前n项和为Sn,且满足Sn+1=2an,n∈N*.(Ⅰ)求数列{an}的通项...
(Ⅰ)n=1时,s1+1=2a1,∴a1=1,…(2分)n≥2时,又sn-1+1=2an-1,相减得an=2an-1,∵{an}是以1为首项,2为公比的等比数列,故an=2n?1…(6分)(Ⅱ)由(Ⅰ)得an+1=2n,∴2n=2n-1+(n+1)dn,∴dn=2n?1n+1,∴1dn=n+12n?1…(8分)∴Tn=220+321+…+...

已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n∈N*),数列{bn}满足b1=1...
(1)令n=1,得a1=S1=2a1-1,解得a1=1,当n≥2时,an=Sn-Sn-1=2(an-an-1),整理,得an=2an-1,∴an=2n?1.∵数列{bn}满足b1=1,nbn+1=(n+1)bn,∴bn+1n+1=bnn,∴{bnn}是首项为1的常数列,∴bnn=1,∴bn=n.(2)∵数列{bn}的前n项和为Qn,∴Qn=1+2+3...

相似回答