1/2(cos2B---cos2A)=sinBsin(A+B) 前面式子怎么推出后面式子

如题所述

和差化积公式:
cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]
温馨提示:内容为网友见解,仅供参考
第1个回答  2012-03-02
cos2B=cos[(A+B)-(A-B)]=cosA+BcosA-B +sinA+BsinA-B
cos2A=cos[(A+B)+(A-B)]=cosA+BcosA-B -sinA+BsinA-B

(1/2)(cos2A-cos2B)=sinA+BsinA-B

怎样将1\/2(cos2B-cos2A)=sinBsin(A+B)化简成sin(A+B)sin(A-B)=sinBsi...
1\/2(cos2B-cos2A)=1\/2*-2sin[(2B+2A)\/2]sin[(2B-2A)\/2] =1\/2*-2sin(A+B)sin(B-A) =sin(A+B)sin(A-B)

三角函数 1\/2(cos2B-cos2A)会不会等于 sin(A+B)sin(A-B)
sin(A+B)sin(A-B)=(sinAcosB+cosAsinB)(sinAcosB-cosAsinB)=(sinAcosB)^2-(cosAsinB)^2=(cosB)^2[1-(cosA)^2]-(cosA)^2[1-(cosB)^2]=(cosB)^2-(cosBcosA)^2-(cosA)^2+(cosAcosB)^2 =(cosB)^2-(cosA)^2 综上,化简后 1\/2(cos2B-cos2A)=sin(A+B)sin(A-B)...

sinBsin(A+B)=2\/1(cos2B-cos2A) 等于 sin(A+B)sin(A-B)
cos2A=cos[(A+B)+(A-B)]=cos(A+B)cos(A-B)-sin(A+B)sin(A-B)则cos2B-cos2A=2sin(A+B)sin(A-B)所以由sinBsin(A+B)=2/1(cos2B-cos2A)可得 sinBsin(A+B)=sin(A+B)sin(A-B)

cos2A-cos2B=-2sin(A+B)sin(A-B)咋来的 为啥
简单分析一下,答案如图所示

cos2A-cos2B=-2sin(A+B)sin(A-B)咋来的 为啥
亲,还满意吧?给个采纳吧,谢谢!

求证在三角形ABC中SinA^2-SinB^2=1\/2(cos2B-cos2A)
cos2B=2cos²B-1,cos2A=2cos²A-1 原式右边=1\/2*(2cos²B-1-2cos²A+1)=cos²B-cos²A 又sin²A+cos²A-(sin²B+cos²B)=0 即所证成立

三角函数的问题 1+cos2A-cos2B-cos2C=2sinBsinC,求角A
2cos²A-2cos²B+2sin²C=2sinBsinC cos²A-cos²B+sin² (A+B)=sinBsinC 2sinAcosAsinBcosB+2cos²Asin²B=sinBsinC 2cosA(sinAcosB+cosAsinB)-sinC=0 2cosAsinC-sinC=0 SinC(2cosA-1)=0 cosA=1\/2 A=60 ...

cos2b-cos2a=2sinc(sina-sinc)
有和差化积公式cos α-cos β=-2sin[(α+β)\/2]·sin[(α-β)\/2]代入就可以得到cos2B-cos2A=-2sin(A+B)sin(B-A)

如何证明sin(A-B)*sin(A+B)=sinA⊃2;-sinB⊃2;
左边用积化和差公式=(cos2B-cos2A)\/2=(1-2sinB^2-1+2sinA^2)\/2=sinA^2-sinB^2

sin2A-sin2B=2sin(A-B)cos(A+B)是怎么出来的
sin2A=sin[(A+B)+(A-B)]=sin(A+B)cos(A-B)+cos(A+B)sin(A-B) ---(1)2B=(A+B)-(A-B),则:sin2B=sin[(A+B)-(A-B)]=sin(A+B)cos(A-B)-cos(A+B)sin(A-B) ---(2)(1)+(2),得:sin2A+sin2B=2sin(A+B)cos(A-B)...

相似回答
大家正在搜