设bn=log以an/(n+1)为底 2的对数,数列{bn}的前n项和为Bn,若存在整数m,对任意n属于正整数且n>=2,都有B3n-Bn>m/20成立,求m的最大值 拜托了,在线等
设数列an的前项和为Sn已知Sn=2an-2^(n+1)求证数列为等差数列an
分析:(Ⅰ)根据题中给出的设数列{an}的前n项和为Sn便可求出数列{an\/2^n}是公差为1的等差数列,将a1=4代入便可求出数列{an}的通项公式;(Ⅱ)先求出数列bn的通项公式,然后求写前n项和Bn的表达式,进而求出的B3n-Bn表达式,然后证明B3n-Bn为递增数列,即当n=2时,B3n-Bn最小,便...
设数列{an}的前n项和为sn,已知sn=2an-2^(n+1),(1).求证数列{an\/2^n...
an\/2^n=a(n-1)\/2^(n-1)+1 a1=2a1-2^2 a1=4 a1\/2=4\/2=2 所以{an\/2^n}是已2为首项,1为公差的等差数列 an\/2^n=2+(n-1)=n+1 an=(n+1)*2^n (2)bn=log2^n 2=1\/n B3n-Bn=1\/(n+1)+1\/(n+2)+...+1\/3n>2n\/3n=2\/3 m\/20<=2\/3 m<=40\/3 ...
设数列{an}的前n项和为Sn,已知Sn=2an-2n+1(n∈N*).(1)求数列{an}的通...
1=1,所以数列{an2n}是公差为1的等差数列.又S1=2a1-22,所以a1=4.所以an2n=2+(n?1)=n+1,故an=(n+1)?2n.(2)因为bn=logann+12=log2n2=1n,则B3n?Bn=1n+1+1n+2++13n.令f(n)=1n+1+1n+2++13n,则f(n+1)=1n+2+1n+3++13n+13n+1+13n+2+13n+3.所...
设数列an的前n项和为Sn,已知Sn=2an-2^n+1,求an的通项公式
题是Sn=2an-2^(n+1)吧,用Sn法,写出S(n+1),再用S(n+1)减Sn,得出关于an和a(n+1)的式子,整理后等式左右同时除以2^(n+1),可证﹛an\/2^n﹜为等差数列,之后就好做啦!结果an=2^n×(n+1)
已知Sn是数列{an}的前n项和,且满足Sn=2An-(2的n+1次方) 证明数列{An...
Sn=2An-2^(n+1) (1)S(n-1)=2A(n-1)-2^n (2)(1)-(2) An=2An-2A(n-1)-2^nAn=2A(n-1)+2^nAn\/2^n=A(n-1)\/2^(n-1)+1令An\/2^n=BnBn=B(n-1)+1∴{An\/(2的n次方)}是公差为1的等差数列
已知数列{an}的前n项和为Sn,满足Sn=2an-2n+1.(1)证明:数列{an2n}是等 ...
解答:证明:(1)n=1时,a1=4;n≥2时,an=Sn-Sn-1,可得an=2an-1+2n,∴an2n-an?12n?1=1,∴数列{an2n}是首项为2,公差为1的等差数列,∴an2n=n+1,∴an=(n+1)?2n;(Ⅱ)bn=an4n=(n+1)?2-n,∴Tn=2?12+3?122+…+(n+1)?12n,∴12Tn=2?122+…+n?12n...
设数列{an}的前n项和Sn=2an-2n(1)证明数列{an+1-2an}是等差数列(2)证明...
解:(1)Sn=2an-2n 则Sn+1=2an+1-2(n+1)an+1=Sn+1-Sn=2an+1-2an-2 则an+1-2an=2 所以{an+1-2an}是等差数列 (2)an+1-2an=2 则an+1+2=2(an+2)所以{an+2}是等比数列 (3)a1=S1=2a1-2 a1=2 因为{an+2}是公比为2的等比数列 所以an+2=a1×2^(n-1)...
已知数列an的前n项和为sn=2an-2^(n-1)
解答:解:数列{an}的前n项和Sn,已知Sn=2an-2n+1①则:n≥2时,Sn−1=2an−1−2n−1+1②所以:①-②得:an=2an−2an−1−2n+2n−1整理得:an=2an−1−2n−1所以:an2n−an−12n−1=1...
设数列an的前n项和为sn,满足sn=2an-2的n次方,令bn=an\/2的n次方 求证bn...
Sn=2an-2^n Sn-1=2an-1 -2^(n-1)an=Sn-Sn-1 =2(an-an-1) -2^(n-1)an=2an-1+2^(n-1)an\/2^n=an-1\/2^(n-1) +1\/2 bn=an\/2^n bn-1=bn\/2^(n-1)bn=bn-1+1\/2 bn-bn-1=1\/2
设数列an的前n项和为sn,且sn=2an-2^n(n为正整数) 1.求证数列(an+1-2...
-2^(n+1)两式相减得a(n+1)=2an+2^n 变形得a(n+1)\/2^n=an\/2^(n-1)+1 故{an\/2^(n-1)}是首项为a1\/1=2公差为1的等差数列 则an\/2^(n-1)=n+1 则an=(n+1)*2^(n-1)2、an\/(n+1)=2^(n-1)则a1\/2+a2\/3+a3\/4+...+an\/(n+1)=2^n-1<2^n 得证 ...