已知函数f(x)=-(sinx)^2+sinx+a,若1≤f(x)≤4对一切实数x成立,求实数a的取值范围。

如题所述

f(x)= -sin²x+sinx+a
令sinx=t,-1≤t≤1
g(t)=-t²+t+a= -(t - 1/2)²+a+1/4
∴g(t)的值域为[g(-1),g(1/2)],即:[a-2,a+1/4]
∴f(x)=值域为[a-2,a+1/4]
∴[a-2,a+1/4]包含于[1,4]
∴a-2≥1,a+1/4≤4
∴3≤a≤15/4
温馨提示:内容为网友见解,仅供参考
无其他回答

已知函数f(x)=-(sinx)^2+sinx+a,若1≤f(x)≤4对一切实数x成立,求实数a...
f(x)= -sin²x+sinx+a 令sinx=t,-1≤t≤1 g(t)=-t²+t+a= -(t - 1\/2)²+a+1\/4 ∴g(t)的值域为[g(-1),g(1\/2)],即:[a-2,a+1\/4]∴f(x)=值域为[a-2,a+1\/4]∴[a-2,a+1\/4]包含于[1,4]∴a-2≥1,a+1\/4≤4 ∴3≤a≤15\/4...

f(x)=-(sina)^2+sinx+a,若对x属于R,1<=f(x)<=17\/4恒成立,求a的取值范 ...
令sinx=t,y=f(x),则 y=-t^2+t+a =-(t-1\/2)^2+a+1\/4 因为-1<=t<=1 所以函数在【-1,1\/2】里单调递增,在【1\/2,1】里单调递减 故x=1\/2时取最大值,ymax=a+1\/4 最小值必定在端点处取得,因为x=-1时y=-2+a;x=1时y=a 所以最小值ymin=-2+a 现在对x属于R,1...

已知f(x)=-sin2x+sinx+a,若1≤f(x)≤174对一切x∈R恒成...
解答:解:设sinx=t,-1≤t≤1 则f(x)=f(t)=-t2+t+a=-(t- 1 2 )2+a+ 1 4 ,当t= 1 2 函数取得最大值,t=-1时,函数有最小值,∴f(1 2 )=a+ 1 4 ≤ 17 4 ,① f(-1)=a-2≥1,② ①②联立求得3≤a≤4.故答案为:3≤a≤4.

已知函数y=-sin^2x+sinx+a,若1≤y≤4对一切x∈R恒成立.求实数a的取 ...
sinx=-1,f(x)最小=-2+a 所以1<=-2+a<=f(x)<=1\/4+a<=4 1<=-2+a,a>=3 1\/4+a<=4,a<=15\/4 所以3<=a<=15\/4

函数f(x)=-sin^2x+sinx+a,若1≤f(x)≤17\/4对一切x属于R都成立,求a...
f(X)=-sin^2X+sinX+a =-(sinx-1\/2)^2+A+1\/4 因为:-1≤sinx≤1,所以-3\/2≤sinx-1\/2≤1\/2,-9\/4≤-(sinx-1\/2)^2≤0,a-2≤f(x)≤a+1\/4 又有:1≤F(X)≤17\/4 则:1≤a-2,a+1\/4≤17\/4 解得 a≥3,a≤4 实数A取值范围3≤A≤4.

已知函数f(x)=-sinx的平方+sinx+a.(1)dang f(x)=0有实数解时,求a的取...
f(x)=-(sinx-1\/2)²+1\/4+a -1<=sinx<=1 -3\/2<=sinx-1\/2<=1\/2 0<=(sinx-1\/2)²<=9\/4 -9\/4<=-(sinx-1\/2)²<=0 -2+a<=-(sinx-1\/2)²+1\/4+a<=1\/4+a f(x)=0 则-2+a<=0<=1\/4+a 所以a<=2,a>=-1\/4 -1\/4<=a<=2 ...

函数f(x)=-sin平方x+sinx+a,若1≤f(x)≤17\/4对一切x∈R恒成立,求a的...
-sinx+sinx+a=-(sinx-1\/2)+a+1\/4=f(x) 1≤-(sinx-1\/2)+a+1\/4≤17\/4 a-4≤(sinx-1\/2)≤a-3\/4 0≤(sinx-1\/2)≤1\/4 a-4≤0 a-3\/4>=1\/4 a≤4 a>=1 所以1≤a≤4

函数f(x)=-sin的平方x+sinx+a,若1≤f(x)≤17╱4对一切的x∈R恒成立...
-sin�0�5x+sinx+a=-(sinx-1\/2)�0�5+a+1\/4=f(x)1≤-(sinx-1\/2)�0�5+a+1\/4≤17\/4 a-4≤(sinx-1\/2)�0�5≤a-3\/4 0≤(sinx-1\/2)�0�5≤1\/4 a-4≤0 a-3\/4>=1\/4...

已知函数f(x)=-sin^2x+sinx+a (1)当f(x)=0有实数解时,求a的取值范围...
令t = sinx,则 f(x) = t^2 + t + a , t的范围[-1,1](1) f(x) = 0 , 即 t^2 + t +a = 0, 化简 (t + 1\/2)^2 + a - 1\/4 = 0, 当且仅当 t = -1\/2, a = 1\/4时,f(x)=0 成立。所以a = 1\/4 (2) 1=<t^2+t+a<=17\/4, 即 1=...

已知函数f(x)=-sin^2(x)+sinx+a(1)当f(x)=0有实数解时,求a的取值...
f(x)=-(sin^2x-sinx+1\/4)+1\/4+a =-(sinx-1\/2)^2+(4a+1)\/4 -9\/4

相似回答
大家正在搜