完全正確的嗎··
追答完全正确哦
已知函数f(x)=ax的平方+(2a-1)x-3在区间【-2分之3,2】上的最大值为1...
2、a不为0,则f(x) 为二次函数,抛物线 2.1、a > 0 则最大值在边界上取到,如果f(-3\/2)=1,则a=-2,与假设不符;如果f(2)=1,则a=3\/4,通过计算f(-3\/2),其值小于1,所以a=3\/4为答案之一 2.2、a<0 此时,最大值在对称轴上取到,即(-2a+1)\/2a=1,a=1\/4,与假...
...+(2a-1)x-3在区间【-2\/3,2】上的最大值为1,求实数a的值
=0,f(x)=-x-3,x=-3\/2,最大不是1 a不等于0 f(x)=a[x+(2a-1)\/2a]^2-(2a-1)^2\/4a-3 a>0,向上 -3\/2和2的中点是1\/4 若对称轴-(2a-1)\/2a>1\/4 -2a+1>a\/2 a<2\/5 0<a<2\/5 则x=-3\/2时是最大值 f(-3\/2)=1 a=10\/3,不符合0<a<2\/5 若对称轴-(2a-...
已知函数f(x)=ax2+(2a-1)x-3在区间[-3\/2,2]的最大值为1,求实数a的值
f(x)=ax^2+(2a-1)x-3,对称轴 x=1\/(2a)-1,[-3\/2,2](1)假设1\/(2a)-1≤-3\/2,①a>0即:-1≤a<0,最大值为1,即1=4a+(2a-1)*2-3,a=3\/4,不在:-1≤a<0中,舍去,②a<0时,同样不成立 (2)假设1\/(2a)-1≥2,,①a>0即:0<a≤1\/6,最大值为1,即1=...
已知函数f(x)=ax平方+(2a-1)x-3在区间[-3\/2,2]上的最大值为1,则实数a...
a=0时f(x)=-x-3最大值为1解得x=-4不在定义域内 所以a=!0 (1)当a>0时 最低点横坐标为1\/2a-1 ①当1\/2a-1<-3\/2时,a<-1,与a>0的前提矛盾,这种情况不存在。②当1\/2a-1>2时,所以a<1\/6且a>0,在这种情况下定义域内的函数为单调递减函数,最大值在x=-3\/2处取得代入函...
...2 +(2a-1)x-3在区间 [- 3 2 ,2] 上的最大值为1,求实数a的值...
x 0 =- 1 3 ∈[- 3 2 ,2] 且距右端2较远,所以f(2)最大合适;③令f(x 0 )=1,得a= 1 2 (-3±2 2 ) ,经验证a= 1 2 (-3-2 2 ) 综上,a= 3 4 或a= 1 2 (-3-2 2 ) .
已知函数f(x)=ax^2+(2a-1)x-3 (a≠0)在区间[-3\/2,2]上的最大值为3...
①当1(2a)-1≤-3\/2时,即-1≤a<0时,f(x)在[-3\/2,2]上递减,f(x)max=f(-3\/2)=-3a\/4-3\/2=3,a=-6<-1,不合题意故此时没有满足题意的a值 ②当1(2a)-1大于-3\/2时有a<-1,最大值在对称轴处取得,f(x)max=(-4a^2-8a-1)\/4a=3,a1=-5\/2+√6(舍去)...
已知函数f(x)=ax^2+(2a-1)x-3(a不等于0)在区间[-3\/2,2]上的最大值为1...
2次函数图像开口向上所以最值点应在2个端点处取得 所以带入2个端点 x=-3\/2时算的不符合a>0 x=2 算得a=3\/4 当a小于0时 再次讨论:对称轴与区间的关系 对称轴X=(1\/2a)-1 令对称轴=-3\/2 得 a=-1 1,当a大于-1时(小于0)此时对称轴在区间内 吧对称轴带入函数式 解出a 解得...
...平方+【2a-1】x-3在区间【-1.5,2】上的最大值为1。求实数a的值_百...
解:函数y=ax²+(2a-1)x-3 (-b\/2a)=(1-2a)\/2a 1)当a>0时 ① 2≤(1-2a)\/2a,即a≤1\/6时 ymax=f(-3\/2)=1 得 (9\/4)a-(3\/2)•(2a-1)-3=1 a=-10\/3(不符合题意,舍去)②当1\/4≤(1-2a)\/2a≤2 【1\/4=[(-3\/2)+2]\/2】即1\/6≤a≤2\/5...
...1)x-3在-2分之3≤x≤2上的最大值为1,求实数a的值
f(x)在区间[-3\/2,2]上有最大值,且a不等于0,可得a<0 f`(x)=2ax+(2a-1),令f`(x)=0,2ax+(2a-1)=0,x=1-2a\/2a 当1-2a\/2a<-3\/2时,a<-1,此时f(-3\/2)=1,即a=-10\/3 当1-2a\/2a>2时,a<1\/6,又a<0,故a,<0,此时f(2)=o,即a=3\/4,a不符,舍去 当-3\/...
已知二次函数f(x)=ax方+(2a-1)x+1在区间[-3\/2,2]上的最大值为3,求实数...
2)对称轴大于0.25,这时f(-1.5)=3,解得a=-2\/3<0,舍 2°a<0 1)对称轴小于-1.5,这时f(-1.5)=3,解得a=-2\/3,符合题意 2)对称轴在[-3\/2,2],这时[4a-(2a-1)²] \/ 4a=3,a=-0.5,舍 3)对称轴大于2,这时f(2)=3,解得a=0.5>0,舍 所以a=0.5...