用分部积分法求下列不定积分 1)∫xsin2xdx 2)∫xlnxdx 3)∫arccosxdx 4)∫xarctanxdx

用分部积分法求下列不定积分

1)∫xsin2xdx
2)∫xlnxdx
3)∫arccosxdx
4)∫xarctanxdx

第1个回答  2011-12-06
2)3)4)答案同楼上,
1)∫xsin2xdx=(-1/2)∫xdcos2x=(-1/2)xcos2x+(1/2)∫cos2xdx=(-1/2)xcos2x+(1/4)sin2x+C

2)∫xlnxdx=(1/2)∫lnxdx^2=(1/2)x^2lnx-(1/2)∫xdx=(1/2)x^2lnx-(1/4)x^2+C

3)∫arccosxdx=xarccosx-∫-xdx/√(1-x^2)
=xarctanx-(1/2)d(1-x^2)/√(1-x^2)
=xarccosx -√(1-x^2)+C

4)∫xarctanxdx=(1/2)∫arctanxdx^2 =(1/2)x^2arctanx-(1/2)∫x^2dx/(1+x^2)
=(1/2)x^2arctanx-(1/2)x+(1/2)∫dx/(1+x^2)
=(1/2)x^2arctnax-(x/2)+(1/2)arctanx+C本回答被提问者采纳
第2个回答  2011-12-06
1)∫xsin2xdx
=S1/2*xdsin2x
=1/2*xsin2x-1/2*Ssin2xdx
=1/2*xsin2x-1/4*Ssin2xd2x
=1/2*xsin2x+1/4*cos2x+c
2)∫xlnxdx
=1/2*Slnxdx^2
=1/2*x^2*lnx-1/2*Sx^2dlnx
=1/2*x^2 *lnx-1/2*Sx^2*1/x*dx
=1/2*x^2*lnx-1/2*Sxdx
=1/2*x^2*lnx-1/4*x^2+c

3)∫arccosxdx
=xarccosx-Sxdarccosx
=xarccosx-Sx*(-1/(1-x^2)^(1/2))dx
=xarccosx+Sx/根号(1-x^2)dx
=xarccosx-根号(1-x^2)+c
4)∫xarctanxdx
=1/2*Sarctanxdx^2
=1/2*x^2*arctanx-1/2*Sx^2darctanx
=1/2*x^2*arctanx-1/2*Sx^2/(x^2+1)dx
=1/2*x^2*arctanx-1/2*Sdx+1/2*S1/(x^2+1)dx
=1/2*x^2*arctanx-x/2+1/2*arctanx+c
第3个回答  2011-12-06
1. 原式=x^2 /2 * sin2x - 1/2 ∫sin2xd2x = x^2 /2 * sin2x - 1/2 * cos2x + c
2. 原式=x^2 /2 * lnx - ∫lnxdx = x^2 /2 * lnx -1/x + c
3. 原式=x * arccosx + ∫x/根号下(1-x^2) , 令x=sint,得 x * arccosx + 根号下(1-x^2)
相似回答