sinx的三次方,四次方,等等,求积分怎么做

如题所述

∫sin^3xdx=-cosx+(1/3)cos^3x+C。∫(sinx)^4dx=(3/8)x-(1/4)sin2x+(1/32)sin4x+C。C为常数。总体思想,运用公式降幂。

∫sin^3xdx

=∫sin^2x sinxdx

=-∫(1-cos^2x)d(cosx)

=-∫d(cosx)+∫cos^2xd(cosx)

=-cosx+(1/3)cos^3x+C

∫(sinx)^4dx

=∫[(1/2)(1-cos2x]^2dx

=(1/4)∫[1-2cos2x+(cos2x)^2]dx

=(1/4)∫[1-2cos2x+(1/2)(1+cos4x)]dx

=(3/8)∫dx-(1/2)∫cos2xdx+(1/8)∫cos4xdx

=(3/8)∫dx-(1/4)∫cos2xd2x+(1/32)∫cos4xd4x

=(3/8)x-(1/4)sin2x+(1/32)sin4x+C

扩展资料:

二倍角公式

sin2α=2sinαcosα

tan2α=2tanα/(1-tan^2(α))

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 

半角公式

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

不定积分的公式

1、∫ a dx = ax + C,a和C都是常数

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

3、∫ 1/x dx = ln|x| + C

4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + C

6、∫ cosx dx = sinx + C

7、∫ sinx dx = - cosx + C

8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

温馨提示:内容为网友见解,仅供参考
第1个回答  推荐于2017-10-02
奇次方时,
分出一个sin,凑成dcos,
剩下的sin偶次方都化成cos的形式,用【sinsin=1-coscos】。
偶次方时,
用【sinsin=(1-cos2x)/2,coscos=(1+cos2x)/2】降低次数,
直至降成最高次为一次的。本回答被提问者和网友采纳
第2个回答  2015-05-08
以sinx为导函数求其原函数,然后用微积分基本公式算积分!
相似回答