已知关于x的方程x的绝对值=ax-a有正根且没有负根,则a的取值范围是?

如题所述

解:由你题目可知:

X既有可能为正数也可能为负数。

所以讨论:

一:当x大于0时。绝对值符号去了。

得x=ax-a,进一步得x=a/(a-1)

而x大于0

所以a/(a-1)>0

即a(a-1)>0

得出a<0或a>1

同理,当x为负数时,绝对值符号去掉,变为

-x=ax-a

进一步变为x=a/(1+a)

而x为负数,即x<0

所以a/(1+a)<0。

即a(a+1)<0

所以-1<a<0

而为正数时候,a<0或a>1

所以把a≤0中的(-1,0)取出

得到a的取值范围为。a≤-1或a>1
温馨提示:内容为网友见解,仅供参考
第1个回答  2012-03-08
∵方程有正根且没有负根,
∴x>0
∵|x|=ax-a
∴x=ax-a
∴ x=a/(a-1)>0
∴a<0或a>1
第2个回答  2012-03-07
若x=ax-a
则x=a/(a-1)>0
解得a<0或a>1
若-x=ax-a
则x=a/(a+1)
解得a<-1或a>0

已知关于x的方程x的绝对值=ax-a有正根且没有负根,则a的取值范围是?
即a(a-1)>0 得出a<0或a>1 同理,当x为负数时,绝对值符号去掉,变为 -x=ax-a 进一步变为x=a\/(1+a)而x为负数,即x<0 所以a\/(1+a)<0。即a(a+1)<0 所以-1<a<0 而为正数时候,a<0或a>1 所以把a≤0中的(-1,0)取出 得到a的取值范围为。a≤-1或a>1 ...

已知关于x的方程|x|=ax-a有正根且没有负根,求a的取值范围。
当x<0时,-x=ax-a解为非负值或无解 这么理解这段话:非负值 就是0和正数 分析 x<0这种情况仅仅只是为了说明答案还要考虑这种情况的反答案 因为题目已经说了|x|=ax-a有正根且没有负根 那就你不但要把取正根时的a的范围求到 同时也要把取负根时a的范围求出来,但当然,没有负根我们就要...

已知关于x的方程|X|=ax-a有正根且没有负根,求a的取值范围
解:|X|=ax-a ∴ax-|X|=a 方程|X|=ax-a有正根且没有负根 ∴x>0 (a-1)x=a x=a\/(a-1)要保证x>0 必须:(1)a>0 且 a-1>0 ∴ a>1 (2)a<0 且a-1<0 ∴a<0 即a的取值范围为a<0或者 a>1 。

已知关于x的方程|X|=ax-a有正根且没有负根,求a的取值范围。
由1),即得正根条件: a>1 且x>=1, 或者a<0, 0<x<=1 3)负根条件: x<0, -x=ax-a --> x=a\/(a+1)<0--> -1<a<0 由1),即得负根条件: -1<a<0, x<0 根据条件:只有正根,没有负根,因此只能取 a>1(此时x>=1,没负根), 或者a<=-1( 此时0<...

...x|=ax-a有正根且没有负根,则a的取值范围是( )A.a>1B.a≤-1C.a>...
1>0,解得:a>1 或a<0, 由①,即得正根条件:a>1 且x≥1,或者a<0,0<x≤1,③负根条件:x<0,得:-x=ax-a,解得:x=aa+1<0,即-1<a<0, 由①,即得负根条件:-1<a<0,x<0,根据条件:只有正根,没有负根,因此只能取 a>1(此时x≥1,没负根),...

已知关于x的方程,IxI=ax-a有正根且没有负根,求a的取值范围。要过程!
这道题可以用数形结合的方法,分别画出两个函数的图像,他们的交点横坐标就是原方程的解,所以得a>1

...题:已知关于x的方程 |x|=ax一a 有正根没有负根,求a的取值范围,高中...
x=ax-a x=a\/(a-1)即然X>0那么就有a>0 ,a-1>0 解得a>0 a<0,a-1 <0 解得a<1 题主说答案a≤-1 a如果=1,假设X=1\/2 原式就不成立啦,∴a≠1 本题的答案 为a>0 ,a<1

已知方程 X的绝对值=ax+1有一个正根并且没有负根,求a的值.
有正根且没有负根,则x>0,整理得(1-x)a=1,当x=1时,a不存在,当x≠1时,a=1\/(1-x),所以,当0<x<1时,a>0,当x>1时,a<0.

已知方程x的绝对值=ax+1有一个负根而没有正根,则a的取值范围
解答的思路是根据x的正负讨论而去掉绝对值 这里方程无解(此时a=1),指的是当x>=0时,这个前提条件下所谓的无解 而a=1这个取值,在x<0时,由下面的讨论,明显是有负根的

设a为整数,已知关于x的方程x的绝对值=ax加1既有一个正根又有一个负根...
当x>0时:x=1\/(a-1)x

相似回答