在一个含有若干个元的多项式中,如果任意交换两个元的位置,多项式不变,这样的多项式叫做对称多项式.
二元对称式的基本对称式是x+y,xy任何二元对称多项式都可用x+y,xy表示,如x2+y2=(x+y)2-2xy,二元对称多项式的分解方法之一是:先将其用xy,x+y表示,再行分解.
对称式的因式分解
在一个含有若干个元的多项式中,如果任意交换两个元的位置,多项式不变,这样的多项式叫做对称多项式.
例7分解因式x4+(x+y)4+y4
分析 这是一个二元对称式,二元对称式的基本对称式是x+y,xy任何二元对称多项式都可用x+y,xy表示,如x2+y2=(x+y)2-2xy,二元对称多项式的分解方法之一是:先将其用xy,x+y表示,再行分解.
解 ∵x4+y4
=(x+y)4-4x3y-6x2y2-4xy2
=(x+y)4-4xy(x+y)2+2x2y2.
∴原式=(x+y)4-4xy(x+y)2+2x2y2+(x+y)4
=2(x+y)4-4xy(x+y)2+2x2y2
=2[(x+y)4-2xy(x+y)2+(xy)2]
=2[(x+y)2-xy]2-2(x2+y2+xy)2,
例8分解因式a2(b-c)+b2(c-a)+c2(a-b).
此题中若将式中的b换成a,c换成b,a换成c,即为c2(a-b)+a2(b-c)+b2(c-a),,原式不变,这类多项式称为关于a、b、c的轮换对称式,轮换对称式的因式分解,用因式定理及待定系数法比较简单,下面先粗略介绍一下因式定理,为了叙述方便先引入符号f(x)、f(a)如对一元多项式3x2-5x-2可记作f(x)=3x2-5x-2,f(a)即表示当x=a时多项式的值,如x=1时多项式3x2-5x-2的值为f(1)=3×12-5×1-2=-4,当x=2时多项式3x2-5x-2的值为f(2)=3×22-5×2-2=0.
因式定理 如果x=a时多项式f(x)的值为零,即f(a)=0,则f(x)能被x-a整除(即含有x-a之因式).
如多项式f(x)=3x2-5x-2,当x=2时,f(2)=0,即f(x)含有x-2的因式,事实上f(x)=3x2-5x-2=(3x+1)(x-2).
证明 设f(x)=anxn+an-1xn-1+…+a1x+a0,
若f(a)=0,则
f(x)=f(x)-f(a)
=(anxn+an-1xn-1+…+a1x+a0)
=(anan+an-1an-1+…+a1a+a0)
=an(xn-an)+an-1(xn-1-an-1)+…+a1(x-a),
由于(x-a)|(xn-an),(x-a)|(xn-1-an-1),…,(x-a)|(x-a),
∴(x-a)|f(x),
对于多元多项式,在使用因式定理时可以确定一个主元,而将其它的元看成确定的数来处理.
现在我们用因式定理来解例8.
解 这是一个含有a、b、c三个字母的三次多项式,现以a为主元,设f(a)=a2(b-c)+b2(c-a)+c2(a-b),易知当a=b和a=c时,都有f(a)=0,故a-b和a-c是多项式的因式,而视b为主元时,同理可知b-c也是多项式的因式,而三次多项式至多有三个因式故可设a2(b-c)+b2(c-a)+c2(a-b)=k(a-b)(b-c)(c-a),其中k为待定系数,令a=0,b=1,c=-1可得k=-1.
∴a2(b-c)+b2(c-a)+c2(a-b)
=-(a-b)(b-c)(c-a).
例9分解因式a3(b-c)+b3(c-a)+c3(a-b).
分析 这是一个关于a、b、c的四次齐次轮换多项式,可用因式定理分解,易知a-b,b-c,c-a是多项式的三个因式,而四次多项式还有一个因式,由轮换对称性可知这个一次因式应是a+b+c,故可设a3(b-c)+b3(c-a)+c3(a-b)=k(a-b)(b-c)(c-a)(a+b+c)(其中k为待定系数),取,a=0,b=1,c=-1可得k=-1,所以
原式=-(a-b)(b-c)(c-a)(a+b+c).
温馨提示:内容为网友见解,仅供参考
什么是轮换对称式和对称式
首先要说明的时,轮换式完整的叫法是轮换对称式。因为几何上对称除了轴对称之外,还有中心对称、旋转对称等,相应地,在代数里对称也有较多的对称。这与我们日常语言中的概念是有区别的。下面指出轮换式和对称式的区别:对称式交换任意两个变量的值,结果不变,如x+y+z; 轮换对称式一定要轮换,例如x-...
轮换对称式和对称式
轮换式:如果一个多项式中的变数字母按照任何次序轮换后,原多项式不变,那么称该多项式是轮换多项式(简称轮换式).在一个含有若干个元的多项式中,如果任意交换两个元的位置,多项式不变,这样的多项式叫做对称多项式.二元对称式的基本对称式是x+y,xy任何二元对称多项式都可用x+y,xy表示,如x2+y2=(x+y...
对称式和轮换对称式有什么区别,有什么固定的解法
对称式只有两个项 轮换对称式有多项 对称式无固定解法 轮换对称式可先求出其中一项再将字母换一下就得到其他项
轮换式\\对称式知识系统讲解
首先要说明的时,轮换式完整的叫法是轮换对称式。因为几何上对称除了轴对称之外,还有中心对称、旋转对称等,相应地,在代数里对称也有较多的对称。这与我们日常语言中的概念是有区别的。下面指出轮换式和对称式的区别:对称式交换任意两个变量的值,结果不变,如x+y+z;轮换对称式一定要轮换,例如x->...
轮换式,对称式,交代式等的常见函数形式
轮换式:z=f(x,y)z=x^2+y^2,z=xy xy=1 都行。对称式:好像和轮换式差不多。
高等代数对称式,轮换式,交代式概念
一、交代式:如果多项式中对换其中两个变数字母后原多项式仅改变符号,那么这个多项式就叫做关于这两个变数字母的交代式。二、对称式:如果一个多元多项式中任意交换两个变数的位置后,原多项式不变,那么它就是一个对称多项式.三、轮换式:如果一个多项式中的变数字母按照任何次序轮换后,原多项式不变,...
5..给出函数的轮换对称性的定义
对称式:将任意两个变量调换,解析式不变的式子,如a+b+c,ab+bc+ca,aab+abb+aac+acc+bbc+bcc等。轮换对称式:将全部变量按顺序变换(如a→b,b→c,c→a),解析式不变的式子,如 aab+bbc+cca等。要注意对称式一定是轮换对称式,而轮换对称式不一定是对称式,比如aab+bbc+cca,将a,b互换...
对称式轮换式的因式分解有何特点
1、轮换式也称为轮换对称式。2、对称式一定是轮换式,轮换式不一定是对称式。因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展...
数学中多项式中的对称式和轮换式有何区别
二元对称式的基本对称式是x+y,xy任何二元对称多项式都可用x+y,xy表示,如x2+y2=(x+y)2-2xy,二元对称多项式的分解方法之一是:先将其用xy,x+y表示,再行分解.对称式的因式分解 在一个含有若干个元的多项式中,如果任意交换两个元的位置,多项式不变,这样的多项式叫做对称多项式.例7分解因式x4+(x...
轮换对称式?
对称式交换任意两个变量的值,结果不变,如x+y+z;轮换对称式一定要轮换,例如x->y,y->z,z->x才能使结果不变,如(x-y)\/z+(y-z)\/x+(z-x)\/y,光换两个不行。第二个问题是不是给一个式子,比如xy+yz+zx,求它等于0的解?如果是这样的话,一般情况下有无数组解。所有的一次轮换...