我也知道但这是为什么又什么规则呢像1加到一百之类的
追答1+2+....+n
=n(n+1)/2
1+2+3+4+5+6+7+8+9+10的答案为设么是奇数
因该是因为它的一首一尾相加为奇数,并且一首一尾加起来后没有中间多一个数,所以为奇数
1+2+3+4+5+6...+n为什么=n(n+1)\/2
所以一共n\/2个n+1。如果n为偶,自然没问题;如果n为奇数,那么中间的数等于(n+1)\/2,和就是(n+1)\/2+(n-1)×(n+1)\/2=n(n+1)\/2。所以1+2+3+4+5+6...+n=n(n+1)\/2。
1+2+3+4+5+6+7+8+9+10...+1001的和是奇数还是偶数
奇数!首先将这个式子中的1001这个数放一旁,观察1+2+3+...+999+1000这个式子,这式子中含有500个奇数和500个偶数,因为奇数加偶数的和为奇数,所以将这个式子(1+2+3+...+999+1000)中的奇数和偶数分别相加,例如:1+2,3+4,5+6... 结果为500个奇数,因为奇数加奇数为偶数,所以将这500...
1+2+3+4+5+6+7+8+9+10+
这个问题的答案是偶数。首先,任何偶数加上或减去任何偶数仍然是偶数,所以我们只需要考虑这些数字中有多少个偶数和奇数。从1到2023,偶数和奇数的个数分别相同,即1011个。因此,它们的代数和是偶数加上奇数,即奇数,因此是一个奇数。然而,由于我们可以在每个数字前面添加加号或减号,我们可以让每个数字...
1+2+3+4+5+6+7+8+9+……+其结果是奇数还是偶数?
=?最后一个数字可以设为n(n∈+∞),题目分解成(1+n)+[2+(n-1)]+[3+(n-2)]+……若n是奇数,则结果是奇数;若n是偶数,则结果也相应的为偶数。n本身不具有奇偶性,因此答案就不会存在是奇数还是偶数的问题。对于经典,我们的想法就显得简单多了。关于1的这个题,结果是1还是0呢?
1+2+3+4+5+6+7+8+9+10+?
答案无解,这些数字全是奇数(单数),三个奇数相加还是奇数,而30是偶数(双数),不是奇数。这些数字中任意三个相加都不可能是30。
1+2+3+4+…+2009的结果是奇数还是偶数?
1+2+3+4+…+2009 等差数列求和……(首项+末项)×项数 ÷2 =(1+2009)2009\/2 =1005X2009 只看末尾 5x9=45 末尾5,为奇数
1+1+2+3+4+5+6等等加101最后的积是奇数还是偶数还是奇数或者?
1到101之间一共有50个偶数和51个奇数,然后任意偶数相加都是偶数,偶数个奇数相加是偶数,奇数个奇数相加是奇数,而51是奇数,所以最后的和是奇数!
为什么1+2+3+4加到五十的和是奇数的原因
因为1至50中有25个偶数,25个奇数,偶数与偶数的和为偶数,奇数加奇数的和也为偶数,但偶数与奇数的和为奇数。25个偶数的和为偶数,24个奇数的和也为偶数,但多出一个奇数,所以1+2+3+……+50的结果为奇数
...9,10这10个数前面任意添加“+”和“-”号,它们的代数和是奇数...
首先 +1+2+3+……+10 = (1+10)*10\/2 = 55 是个奇数 其次,无论如何更改上述式子中的+号为-号,就相当于总和里少加某数,再减此数,等价于总和里减两个此数,总不改变总和的奇偶性。综上,它们的代数和必是奇数。