1+1+1\/2+1+1\/2+1\/3+1+1\/3+1\/4+。。。1+1\/2003+1\/2004等于多少
=(1+1+1+..+1)+(1+1\/2+1\/3+...+1\/2003)+(1\/2+1\/3+1\/4+...+1\/2004)=(1+1+1+..+1)+(1+1\/2+1\/3+...+1\/2003)+(1+1\/2+1\/3+1\/4+...+1\/2004-1)=2003+ln(2003+1)+r+ln(2004+1)+r-1 =2002+ln(2004*2005)+2r (其中1+1\/2+1\/3+...+1\/n=ln(...
1+1\/2+1\/3+1\/4+...1\/2002=???
如果你已经学习过对数函数的话,可以由下面的公式1+1\/2+1\/3+1\/4+...+1\/n=ln(n)+r 其中r为欧拉常数,r的近似只是0.57721566490153286060651209 如果要求的是准确值就是ln2000+r,近似值是8.178。如果不懂对数函数的话,就只有硬算了。
1+1\/(1+2)+1\/(1+2+3)+...+1\/1+2+3+...+2004=?
1+2=2*3\/2 1+2+3=3*4\/2 1+2+3+4=4*5\/2 1+2+3+……+2004=2004*2005\/2 所以,1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+2006)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+……+2\/(2004*2005)=2[(1\/2+1\/(2*3)+1\/(3*4)+1\/(...
1+1\/1+2+1\/1+2+3+1\/1+2+3+4+.………+1\/1+2+3+.……+10的简便运算
1+1\/1+2+1\/1+2+3+1\/1+2+3+4+.………+1\/1+2+3+.……+10的简便运算 原式 =1+1\/3+1\/6+1\/10+1\/15+1\/21+1\/28+1\/36+1\/45+1\/55 =2×(1\/2+1\/6+1\/12+1\/20+1\/30+1\/42+1\/56+1\/72+1\/90+1\/110) =2×(1-1\/2+1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+1...
1 + 1\/1+2 + 1\/1+2+3 + 1\/1+2+3+4 + ... + 1\/1+...+100
原式可化为1+1\/3+1\/6+1\/10+1\/15+1\/21+...+1\/5050 =1+2\/2X3+2\/3X4+2\/4X5+…2\/100X101 =1+2(1\/2X3+1\/3X4+1\/4X5+…1\/100X101)=1+2(1\/2-1\/3+1\/3-1\/4+1\/4-1\/5+...+1\/100-1\/101)=1+2(1\/2-1\/101)=1+2(99\/202)=200\/101 ...
1+1\/1+2+1\/1+2+3+1\/1+2+3+4+1\/1+2+3+4+5+...+1\/!+2+3+...+100=?_百 ...
1\/1+2+3+...+n=2\/n(n+1)=(2\/n)-(2\/n+1)所以1+ 1\/1 +2+ 1\/1 +2+3+ 1\/1 +2+3+4+ 1\/1 +2+3+4+5+...+ 1\/1 +2+3+...+100=1+(2\/2-2\/3)+(2\/3-2\/4)+(2\/4-2\/5)+...+(2\/100-2\/101)=1+1-2\/101=200\/101 ...
求助,这个题怎么做1\/2+1\/3+1\/4+……+1\/2003+1\/2004=?
答案是:=ln(2005)+C≈7.6033993397407+0.57722=8.18 (C是欧拉常数≈0.57722)1\/n[1\/(1\/n)+1\/(2\/n)+………+1\/(1\/n)]=积分 1\/xdx(区间是0到1)证明如下:由于ln(1+1\/n)<1\/n (n=1,2,3,…)于是调和级数的前n项部分和满足 Sn=1+1\/2+1\/3+…+1\/n>ln(1+1)+...
数学题:1\/1+2+1\/1+2+3+1\/1+2+3+4...+1\/1+2+3+...+2001
所以原式有:1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)...+1\/(1+2+3+...+2001)=1\/[(1+2)*2\/2]+1\/[(1+3)*3\/2]+1\/[(1+4)*4\/2]+……+1\/[(1+2001)*2001\/2]=2\/(2*3)+2\/(3*4)+2\/4*5+……+2\/(2002*2001)=[1\/2*3+1\/3*4+1\/4*5+...+...
1+1\/1+2+1\/1+2+3+1\/1+2+3+4+……1\/1+2+3+...+100等于多少
答:题目应该缺少了大量的括号吧?1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)第n项的分母是自然数之和(n+1)*n\/2 所以:1+1\/(1+2)+1\/(1+2+3)+1\/(1+2+3+4)+...+1\/(1+2+3+...+100)=1+2\/(2*3)+2\/(3*4)+2\/(4*5)+...+2\/(...
1+1\/1+2+1\/1+2+3+1\/1+2+3+4+...+1\/1+2+3+...+10怎么算
1+2+3=3x4\/2 1+2+3+4=4x5\/2 1+2+……+ n-1 + n =(n-1)n\/2 1+1\/1+2+1\/1+2+3+1\/1+2+3+4+...+1\/1+2+3+...+10 =1+2 (1\/2x3 + 1\/3x4 + ……+ 1\/10x11)=1+2(1\/2 -1\/3+1\/3-1\/4+……+1\/9-1\/10+1\/10-1\/11)=1+2(1\/2 - 1\/11)=1+...