什么是轮换对称式

请懂的人写的通俗易懂些,最好举个例子,写的好我会加分
那只带2个变量就不是轮换式?

首先要说明的时,轮换式完整的叫法是轮换对称式。因为几何上对称除了轴对称之外,还有中心对称、旋转对称等,相应地,在代数里对称也有较多的对称。这与我们日常语言中的概念是有区别的。
下面指出轮换式和对称式的区别:对称式交换任意两个变量的值,结果不变,如x+y+z;
轮换对称式一定要轮换,例如x->y,y->z,z->x才能使结果不变,如(x-y)/z+(y-z)/x+(z-x)/y,光换两个不行。
第二个问题是分解因式的应用,现举实例如下:
①(a+b+c)^5-a^5-b^5-c^5
②8(a+b+c)^3-(b+c)^3-(c+a)^3-(a+b)^3
③x^2(y+z)+y^2(z+x)+z^2(x+y)-(x^3+y^3+z^3)-2xyz
(1) 分析:
将原式看成X的多项式,可知
当X=-Y时,
原式=(-Y+Y+Z)^5-(-Y)^5-Y^5-Z^5 =0
所以原式有因式(X+Y),因为是对称式,所以原式还有因式(Y+Z),(Z+X)
设原式=(X+Y)(Y+Z)(Z+X)[K(X^2+Y^2+Z^2)+T(XY+YZ+ZX)]
令X=1,Y=1,Z=0,代入得 30=2(2K+T);
令X=1,Y=-1,Z=0,代入得-30=-2(5K-2T) 解得K=5,T=5
所以原式=5(X+Y)(Y+Z)(Z+X)(X^2+Y^2+Z^2+XY+YZ+ZX)
(2) 分析
设原式=[(2A+2B+2C)^3-(B+C)^3]-[(C+A)^3+(A+B)^3]
然后利用立方差和立方和公式展开,并令整理后的式子
=(2A+B+C)(M-N)
其中由轮换多项式可确定(M-N)中含有(A+2B+C),(A+B+2C)
比较系数的原式=3(2A+B+C) (A+2B+C)(A+B+2C)
(3)分析
设X=Y+Z,则有
原式=(X+Y)^3+Y^2(2Z+Y)+Z^2(2Y+Z)-[(Y+Z)^3+Y^3+Z^3]-2(Y+Z)YZ
=(Y+Z)^3+2Y^2Z+Y^3+2YZ^2+Z^3-(Y+Z)^3-Y^3-Z^3-2Y^2Z-2YZ^2=0
所以原式有因式(Y+Z-X),因为对称式,故也有因式(Z+X-Y),(X+Y-Z)
设原式=K(Y+Z-X)(X+Y-Z)(Z+X-Y)
其中K为待定系数,比较等式两边XYZ项的系数
右=K(1-1+1-1-1-1)=-2K ,左=-2 所以解得K=1
所以原式=(Y+Z-X)(X+Y-Z)(Z+X-Y)
对称与轮换对称很重要,以后一直到大学都很有用。
温馨提示:内容为网友见解,仅供参考
第1个回答  2012-08-01
如圆x^2+y^2=r^2,x,y互换不影响
球x^2+y^2+z^2=R^2,x,y,z互换不影响
第2个回答  2019-06-08
在一个含有若干个元的多项式中,如果任意交换两个元的位置,多项式不变,这样的多项式叫做对称多项式.
二元对称式的基本对称式是x+y,xy任何二元对称多项式都可用x+y,xy表示,如x2+y2=(x+y)2-2xy,二元对称多项式的分解方法之一是:先将其用xy,x+y表示,再行分解.
对称式的因式分解
在一个含有若干个元的多项式中,如果任意交换两个元的位置,多项式不变,这样的多项式叫做对称多项式.
例7分解因式x4+(x+y)4+y4
分析
这是一个二元对称式,二元对称式的基本对称式是x+y,xy任何二元对称多项式都可用x+y,xy表示,如x2+y2=(x+y)2-2xy,二元对称多项式的分解方法之一是:先将其用xy,x+y表示,再行分解.

∵x4+y4
=(x+y)4-4x3y-6x2y2-4xy2
=(x+y)4-4xy(x+y)2+2x2y2.
∴原式=(x+y)4-4xy(x+y)2+2x2y2+(x+y)4
=2(x+y)4-4xy(x+y)2+2x2y2
=2[(x+y)4-2xy(x+y)2+(xy)2]
=2[(x+y)2-xy]2-2(x2+y2+xy)2,
例8分解因式a2(b-c)+b2(c-a)+c2(a-b).
此题中若将式中的b换成a,c换成b,a换成c,即为c2(a-b)+a2(b-c)+b2(c-a),,原式不变,这类多项式称为关于a、b、c的轮换对称式,轮换对称式的因式分解,用因式定理及待定系数法比较简单,下面先粗略介绍一下因式定理,为了叙述方便先引入符号f(x)、f(a)如对一元多项式3x2-5x-2可记作f(x)=3x2-5x-2,f(a)即表示当x=a时多项式的值,如x=1时多项式3x2-5x-2的值为f(1)=3×12-5×1-2=-4,当x=2时多项式3x2-5x-2的值为f(2)=3×22-5×2-2=0.
因式定理
如果x=a时多项式f(x)的值为零,即f(a)=0,则f(x)能被x-a整除(即含有x-a之因式).
如多项式f(x)=3x2-5x-2,当x=2时,f(2)=0,即f(x)含有x-2的因式,事实上f(x)=3x2-5x-2=(3x+1)(x-2).
证明
设f(x)=anxn+an-1xn-1+…+a1x+a0,
若f(a)=0,则
f(x)=f(x)-f(a)
=(anxn+an-1xn-1+…+a1x+a0)
=(anan+an-1an-1+…+a1a+a0)
=an(xn-an)+an-1(xn-1-an-1)+…+a1(x-a),
由于(x-a)|(xn-an),(x-a)|(xn-1-an-1),…,(x-a)|(x-a),
∴(x-a)|f(x),
对于多元多项式,在使用因式定理时可以确定一个主元,而将其它的元看成确定的数来处理.
现在我们用因式定理来解例8.

这是一个含有a、b、c三个字母的三次多项式,现以a为主元,设f(a)=a2(b-c)+b2(c-a)+c2(a-b),易知当a=b和a=c时,都有f(a)=0,故a-b和a-c是多项式的因式,而视b为主元时,同理可知b-c也是多项式的因式,而三次多项式至多有三个因式故可设a2(b-c)+b2(c-a)+c2(a-b)=k(a-b)(b-c)(c-a),其中k为待定系数,令a=0,b=1,c=-1可得k=-1.
∴a2(b-c)+b2(c-a)+c2(a-b)
=-(a-b)(b-c)(c-a).
例9分解因式a3(b-c)+b3(c-a)+c3(a-b).
分析
这是一个关于a、b、c的四次齐次轮换多项式,可用因式定理分解,易知a-b,b-c,c-a是多项式的三个因式,而四次多项式还有一个因式,由轮换对称性可知这个一次因式应是a+b+c,故可设a3(b-c)+b3(c-a)+c3(a-b)=k(a-b)(b-c)(c-a)(a+b+c)(其中k为待定系数),取,a=0,b=1,c=-1可得k=-1,所以
原式=-(a-b)(b-c)(c-a)(a+b+c).

什么是轮换对称式请懂的人写的通俗易懂些 轮换对称式请懂的人写的通俗...
1、首先要说明的时,轮换式完整的叫法是轮换对称式。因为几何上对称除了轴对称之外,还有中心对称、旋转对称等,相应地,在代数里对称也有较多的对称。这与我们日常语言中的概念是有区别的。2、下面指出轮换式和对称式的区别:对称式交换任意两个变量的值,结果不变,如x+y+z。3、轮换对称式一定要轮换,例...

轮换对称式是什么
轮换式:如果一个多项式中的变数字母按照任何次序轮换后,原多项式不变,那么称该多项式是轮换多项式(简称轮换式).在一个含有若干个元的多项式中,如果任意交换两个元的位置,多项式不变,这样的多项式叫做对称多项式.二元对称式的基本对称式是x+y,xy任何二元对称多项式都可用x+y,xy表示,如x2+y2=(x+y...

求助大家。变量的轮换对称性什么意思?
通俗的说就是把x,y互换等式不变~~~然后先对x计算得出的结果,与先对y计算得出的结果中x,y互换后的结果相同~~ps:前提是x,y定义域相同

轮换对称是什么?
轮换对称式 如果一个代数式中的字母按照某种次序轮换,所得代数式和原代 数式恒等,那么这个代数式叫做关于这些字母的轮换对称式。若某式子的所有字母按确定的顺序排成一列后,将第一个字母用第二个字母代替,第二个字母用第三个字母代替,…最后一个字母用第一个字母代替,如果所得式子与原式恒等,...

轮换对称定义
轮换对称式是现代词,是一个专有名词,指的是如果一个代数式中的字母按照某种次序轮换,所得代数式和原代 数式恒等,那么这个代数式叫做关于这些字母的轮换对称式 比如说简单的x+y+z=0 x2+y2+z2=1等

什么叫“轮换对称性”?
积分轮换对称性是指坐标的轮换对称性,简单的说就是将坐标轴重新命名,如果积分区间的函数表达不变,则被积函数中的x,y,z也同样作变化后,积分值保持不变。二重积分的轮换对称性 定理1 设函数f(x,y)在有界闭域D上连续,D对坐标x,y具有轮换对称性 ,则 三重积分的轮换对称性 定理2:设函数f(x...

轮换对称式分解
轮换对称式的定义是将A,B,C换位置之后仍旧式子不变 A^2+B^2+C^2显然是轮换对称式 那么两两组合的话前面已经有板有3次因子(A+B)(B+C)(C+A),剩下2次的空间,所以看两次的组合只有两种 A^2+B^2+C^2,AB+BC+CA,所以用待定系数K(A^2+B^2+C^2)+m(AB+BC+CA)

轮换对称性什么意思
轮换对称性,这一数学概念描述的是在n元代数式中的变化特性。具体来说,若代数式f(x1,x2,...,xn)在进行特定变换后仍保持其原始状态不变,则称此代数式为轮换对称式。这一变换过程包括将x1, x2,...,xn中的任一变量以序列中的下一个变量替换,直至最后一次替换将xn与x1互换,如此变换后,代数...

轮换对称式举例
首先,轮换对称式是指在数学表达式中,当变量按任意顺序轮换时,表达式的值保持不变的式子。例如,表达式 \\(A^2 + B^2 + C^2\\) 就是一个轮换对称式,无论 \\(A\\)、\\(B\\) 或 \\(C\\) 互换位置,其值不变。这种性质在处理某些数学问题时具有极大优势,能够简化计算过程和理解数学对象的对称性...

谁知道有关轮换对称式的知识?拜托了!
如果一个代数式中的字母按照某种次序轮换,所得代数式和原代 数式恒等,那么这个代数式叫做关于这些字母的轮换对称式。在一个含有若干个元的多项式中,如果任意交换两个元的位置,多项式不变,这样的多项式叫做对称多项式.二元对称式的基本对称式是x+y,xy任何二元对称多项式都可用x+y,xy表示,如x2+y2=(...

相似回答