已知函数f(x)=2√3sinxcosx-2sin²x+1

(1)若x∈R,求函数f(x)的单调增区间
(2)求函数f(x)在区间[0,π/2]上的最小值及此时x的值
(3)若f(x0)=6/5,x0∈[π/4,π/2],求sin2x0的值

f(x)=2√3sinxcosx-2sin²x+1
=√3sin2x+cos2x
=2sin(2x+π/6)
(2) 2kπ-π/2<=2x+π/6<=2kπ+π/2
kπ-π/3<=x<=kπ+π/6
增区间 【kπ-π/3,kπ+π/6】 k∈Z
(2)x∈【0,π/2】
2x+π/6∈【π/6,7π/6】
x=π/2 fmin=-1
(3) f(x0)=6/5
sin(2x0+π/6)=3/5 x0∈[π/4,π/2],2x0+π/6∈[2π/3,7π/6],
cos(2x0+π/6)=-4/5
sin2x0=sin[(2x0+π/6)-π/6]
=sin(2x0+π/6)cosπ/6-cos(2x0+π/6)sinπ/6
=3/5*√3/2+4/5*1/2
=(3√3+4)/10
温馨提示:内容为网友见解,仅供参考
无其他回答

已知函数f(x)=2根号3sinxcosx-2cos²x+1
解由f(x)=2根号3sinxcosx-2cos²x+1 =根号3*2sinxcosx-(2cos²x-1)=√3sin2x-cos2x =2(√3\/2sin2x-1\/2cos2x)=2sin(2x-π\/6)故T=2π\/2=π 2由f(α)=-1 得2sin(2a-π\/6)=-1 即sin(2a-π\/6)=-1\/2 由α∈(0,π\/2)则2α∈(0,π)则2α...

已知函数fx=2根号3 *sinxcosx-2sin²x.
答:y=f(x)=2√3sinxcosx-2sin²x =√3sin2x+cos2x-1 =2*[(√3\/2)sin2x+(1\/2)cos2x]-1 =2sin(2x+π\/6)-1 y=f(x)关于直线x=m对称 则在对称直线处取得最大值或者最小值 所以:sin(2m+π\/6)=1或者sin(2m+π\/6)=-1 所以:2m+π\/6=kπ+π\/2,2m=kπ+π\/3...

已知函数fx=2√3sinxcosx-2sinx平方
f(x)=2√3sinxcosx-2sin²x=√3sin2x+cos2x-1=2sin(2x+π\/6)-1 1)T=2π\/2=π 2)-π\/6≤x≤π\/4 -π\/6≤2x+π\/6≤2π\/3 2x+π\/6=π\/2 x=π\/6 f(-π\/6)=-2 f(π\/4)=√3-1 f(π\/6)=1 ∴最大值为1,最小值为-2 ...

求解f(x)=2√3sinXcosX+2cos²X-1(X∈R),则f(x)的最小正周期是( )
f(x)=2√3sinXcosX+2cos²X-1 =√3sin(2X)+cos(2X)=2sin(2X+π\/6)T=(2π)\/2=π 答案:A

已知函数f(x)=2根号3sinxcosx+2cos方x-1(x属于R) 求函数f(x)的单调递...
f(x)=2√3sinxcosx+2cos²x-1=√3sin2x+cos2x=2sin(2x+π\/6),则递减区间是:2kπ+π\/2≤2x+π\/6≤2kπ+3π\/2,得:kπ+π\/6≤x≤kπ+2π\/3,则减区间是:[kπ+π\/6,kπ+2π\/3],其中k∈Z

已知函数f(x)=2sinxcosx-2(sinx^2)+1,求f(x)的单调增区间,拜托详细解释...
f(x)=2sinxcosx-2sin²x+1 =sin2x+cos2x =√2(sin2xcosπ\/4+cos2xsinπ\/4)=√2sin(2x+π\/4)因sinx的单调增区间为 [2kπ-π\/2,2kπ+π\/2]所以对于f(x)则有:2kπ-π\/2≤2x+π\/4≤2kπ+π\/2 解得:f(x)的单调增区间为:[kπ-3π\/8,kπ+π\/8]...

已知函数f(x)=2根号3sinxcosx+2cos^2x-1,求f(x)的单调递减区间
f(x)=2√3sinxcosx+2cos²x-1 =√3sin2x+cos2x =2(√3\/2*sin2x+1\/2*cos2x)=2sin(2x+π\/6)由图像得:π\/2+2kπ≤2x+π\/6≤3π\/2+2kπ,k为整数 即π\/6+kπ≤x≤4π\/3+kπ,k为整数 则单调减区间为[π\/6+kπ,4π\/3+kπ],k为整数 ...

已知函数f(x)=2√\/3sinx cosx+2cos²x—1(x∈R) (1)求函数f(x)的最...
已知函数f(x)=2√3 sinx cosx+2cos²x—1(x∈R)=√3sin2x +cos2x =2[(√3sin2x +cos2x)\/2]=2sin(2x+π\/3)2x=2π x=π 函数f(x)的最小正周期π x=0, f(x)=2sin(π\/3)= √3 x=兀\/2,2x+π\/3=π\/3 π\/3---2π+π\/3]函数f(x)最大值2,最小...

已知函数f(x)=2√3sinxcosx-2cos²x+1 问函数的最小正周期和单调递增...
f(x)=2√3sinxcosx+1-2(sinx)^2=√3sin2x+cos2x=2sin(2x+π\/6)所以最小正周期=2π\/2=π-π\/2+2kπ<=2x+π\/6<=π\/2+2kπ时递增,所以递增区间为[-π\/3+kπ,π\/6+kπ]∵f(x)=sinxcosx+sin²x=0.5sin2x+0.5(1-cos²x)=0.5√2sin(2x-π\/4)+0.5 ∴...

已知函数f(x)=2√3sinx×cosx+2cos²x-1(x∈R)
(1)解析:∵函数f(x)=2√3sinxcosx+2cos²x-1=√3sin2x+cos2x=2sin(2x+π\/6)∴f(x)的最小正周期为π f(0)=2sin(π\/6)=1,f(π\/2)=2sin(π+π\/6)=-1,f(π\/6)=2sin(π\/3+π\/6)=2 在区间[0,π\/2]上的最大值为2,最小值为-1 (2)解析:∵f(x0)=2...

相似回答