等比数列前n项和公式如何推导?

如题所述

 前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (2)以上n均属于正整数。

如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公式可以快速的计算出该数列的和。

等比公式运用推论:

1、若m、n、p、q∈N,且m+n=p+q,则aman=apaq。

2、在等比数列中,依次每k项之和仍成等比数列。

3、若m、n、q∈N,且m+n=2q,则am×an=(aq)2。

4、若G是a、b的等比中项,则G2=ab(G≠0)。

5、在等比数列中,首项a1与公比q都不为零。

6、在数列{an}中每隔k(k∈N*)取出一项,按原来顺序排列,所得新数列仍为等比数列且公比为q(k+1)。

7、当数列{an}使各项都为正数的等比数列,数列{lgan}是lgq的等差数列。

温馨提示:内容为网友见解,仅供参考
无其他回答

等比数列前n项和公式如何推导?
前n项和公式为:Sn=na1+n(n-1)d\/2或Sn=n(a1+an)\/2 (2)以上n均属于正整数。如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公式可以快速的计算出该数列的和。等比公式运用推论:1、若m、n、p、q∈N,且m+n=p+q...

等比数列的前n项和公式
等比数列公式前n项公式是Sn=a1(1-q^n)\/(1-q)等比数列前n项和公式及推导过程等比数列前n项和公式:Sn =a1(1-q^n)\/(1-q)。推导如下因为an = a1q^(n-1)所以Sn = a1+a1*q^1+...+a1*q^(n-1) (1)qSn =a1*q^1+a1q^2+...+a1*q^n (2)(zhi1)-(2)注意(1)式...

等比数列的前n项和公式是什么
等比数列前n项和公式:Sn=a1(1-q^n)\/(1-q)。推导如下:因为an=a1q^(n-1)所以Sn=a1+a1*q^1+...+a1*q^(n-1)(1)qSn=a1*q^1+a1q^2+...+a1*q^n(2)(1)-(2)注意(1)式的第一项不变。把(1)式的第二项减去(2)式的第一项。把(1)式的第三项减去(2)式的第...

等比数列前n项和公式推导过程(实用)
等比数列前n项和公式:Sn=a1(1-q^n)\/(1-q)。推导如下:因为an=a1q^(n-1)所以Sn=a1+a1*q^1+...+a1*q^(n-1)(1)qSn=a1*q^1+a1q^2+...+a1*q^n(2)(1)-(2)注意(1)式的第一项不变。把(1)式的第二项减去(2)式的第一项。把(1)式的第三项减去(2)式的第二项。以此...

等比数列前n项和公式的推导
等比数列的前n项和公式是Sn=1−qa1(1−qn),其中a1是首项,q是公比,n是项数。1、公式的推导过程 设等比数列的通项公式为:an=a1qn−1,其中a1是首项,q是公比,n是项数。设等比数列的前n项和为Sn=a1+a2+⋯+an根据通项公式可将Sn写成Sn=a1+a1q+a1q2+⋯...

等比数列前n项和公式推导
等比数列,当n不等于1时的前n项和为:首项乘1减去公比的n次方的差除以1减去公比。在推导时,我们运用错位相减法。具体推导过程如下:形如An=BnCn,其中Bn为等差数列,Cn为等比数列。分别列出Sn,再把所有式子同时乘以等比数列的公比q,即q乘Sn。然后错开一位,两个式子相减。这种数列求和方法叫做...

等差等比数列的前n项和公式
进一步化简得:S_n= n\/2×(a_1+a_n)等比数列的前n项和公式推导如下:设等比数列的公比为q,首项为a_1,第n项为a_n。则a_n= a_1×q^(n-1)前n项和S_n= a_1+a_2+...+a_n 将a_n代入得:S_n= a_1+a_1×q+ a_1×q^2+...+a_1×q^(n-1)化简得:S_n= ...

叙述并推导等比数列的前n项和公式
当我们探讨一个公比为q的等比数列{an}时,其前n项和的公式可以通过简单的推导得出。对于非单位公比(q≠1),其前n项和Sn可以用以下公式表示:Sn = a1 * (1 - q^n) \/ (1 - q)。这是通过将数列的和(①)与公比倍数的和(②)相减,然后除以(1-q)得到的。具体步骤是:Sn = a1 + ...

等比数列前n项和公式
公比通常用字母q表示(q≠0)。注:q=1时,an为常数列。即a^n=a。一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。注:q=1时,an为常数列(n为下标)。

如何求等比数列前n项和?
1、等比级数若收敛,则其公比q的绝对值必小于1。2、故当n趋向于无穷时,等比数列求和公式中q的n次方趋于0(|q|<1),此时Sn=a1\/(1-q)。3、q大于1时等比级数发散。4、求和公式推导:(1)Sn=a1+a2+a3+...+an(公比为q)(2)qSn=a1q + a2q + a3q +…+ anq = a2+ a3+ a4+.....

相似回答
大家正在搜