什么是超越数,为什么(派)是超越数

如题所述

超越数的存在是由法国数学家刘维尔(Joseph Liouville,1809—1882)在1844年最早证明的。关于超越数的存在,刘维尔写出了下面这样一个无限小数:a=0.110001000000000000000001000…(a=1/10^1!+1/10^2!+1/10^3!+…),并且证明取这个a不可能满足任何整系数代数方程,由此证明了它不是一个代数数,而是一个超越数。后来人们为了纪念他首次证明了超越数,所以把数a称为刘维尔数。
数例

π
π,在我国叫又环率、圆率、圆周率等。
最先得出π≈3.14的是希腊的阿基米德(约公元前240年),最先给出π小数后面四位准确值的是希腊人托勒密(约公元前150年),最早算出π小数后七位准确值的是我国的祖冲之(约480年),1610年荷兰籍德数学家鲁道夫应用内接和外切正多边形计算π值,通过262边形计算π到35位小数,花费了毕生精力,1630年格林贝格利用斯涅耳的改进方法计算π值到39位小数,这是利用古典方法计算π值的最重要尝试。
以上都是古典方法计算π值。
达什首先计算出π的准确的200位数字。
值得提出的是,达什1824年生于汉堡,只活了短短的37年,便离开了人世,他是一个闪电般的计算者,是一位最了不起的人工计算者,他曾在54秒钟内便完成了两个8位数的乘法,在6分钟内完成了两个20位数的乘法,在40分钟内完成了两个40位数的乘法;他曾在52分钟内算出一个100位数的平方根。达什的这种非凡的计算才能在他制作7位对数表和从7000000到10000000之间的数的因子表便得到了最有价值的充分的运用。
1706年,英国的威廉·姆士首先使用π这个符号,用来表示圆周和直径的比值,但只是在欧拉于1737年采用了这方法以后,π才在这种情况下得到了普遍的应用。
1873年,英国人威廉·桑克斯利用麦新的公式计算π到70位。
1961年,美国的雷思奇和D·桑克斯用电子计算机得出π值的100000位数字。

e
在中学数学书中这样提出:以e为底的对数叫做自然对数。那么e到底有什么实际意义呢?
1844年,法国数学家刘维尔最先推测e是超越数,一直到了1873年才由法国数学家埃尔米特证明e是超越数。
1727年,欧拉最先用e作为数学符号使用,后来经过一个时期人们又确定用e作为自然对数的底来纪念他。有趣的是,e正好是欧拉名字第一个小写字母,是有意的还是偶然巧合?现已无法考证!
e在自然科学中的应用并不亚于π值。像原子物理和地质学中考察放射性物质的衰变规律或考察地球年龄时便要用到e。
在用齐奥尔科夫斯基公式计算火箭速度时也会用到e,在计算储蓄最优利息及生物繁殖问题时,也要用到e。
同π一样,e也会在意想不到的地方出现,例如:“将一个数分成若干等份,要使各等份乘积最大,怎么分?”要解决这个问题便要同e打交道。答案是:使等分的各份尽可能接近e值。如,把10分成10÷e≈3.7份,但3.7份不好分,所以分成4份,每份为10÷4=2.5,这时2.5^4=39.0625乘积最大,如分成3或5份,乘积都小于39。e就是这样神奇的出现了。
1792年,15岁的高斯发现了素数定理:“从1到任何自然数N之间所含素数的百分比,近似等于N的自然对数的倒数;N越大,这个规律越准确。”这个定理到1896年才由法国数学家阿达玛和几乎是同一时期的比利时数学家布散所证明。以e为底还有很多优越性。如以e为底编制对数表最好;微积分公式也具有最简的形式。这是因为只有e^x导数就是其自身,即d/dx(e^x)=e^x。
温馨提示:内容为网友见解,仅供参考
无其他回答

什么是超越数,为什么(派)是超越数
这是关于超越数的存在性的第一个非构造性的证明,换句话说,康托并没有构造出一个具体的超越数就证明了它们的存在!数学中的许多证明就是用非构造性的方法来实现的。刘维尔的方法则是构造性的方法,即实际地生成一个对象并给出证明。这两种方法都是数学证明中的常用方法。一般情况下,我们考虑一个具...

什么是超越数,为什么(派)是超越数
超越数,一种非代数数,首次被证明的存在归功于法国数学家刘维尔,他在1844年的发现尤为重要。他构造了一个无限小数a=0.110001000000000000000001000…,这个数不属于任何整系数代数方程,因此定义为超越数。刘维尔数a的发现,使得数学界认识到超越数的独特性。其中,圆周率π,又称环率、圆率,是另一个...

什么是超越数,为什么(派)是超越数
),并且证明取这个a不可能满足任何整系数代数方程,由此证明了它不是一个代数数,而是一个超越数。后来人们为了纪念他首次证明了超越数,所以把数a称为刘维尔数。数例 π π,在我国叫又环率、圆率、圆周率等。最先得出π≈3.14的是希腊的阿基米德(约公元前240年),最先给出π小数后面四位准确...

为什么π是超越数
希尔伯特推测像 这样的数是超越数。1929年,有人证明了 是超越数。1930年, 也被证明是超越数。证明某些数是超越数有着重大的意义,比如说π的超越性的证明就彻底地解决了古希腊三大作图问题中的化圆为方问题,即化圆为方是不可能的。判断某些给定的数是否超越数实在是太困难了,为了获得上述结果,一...

为什么π是超越数,证明一下
平面直角坐标系上, 1.以原点为圆心,单位长度2为半径,画圆。每个象限 的1/4圆的面积即为派。 2.以原点为圆心,单位长度1为半径,画圆。圆的 面积即为派。 所以,派作为常数,他本身就不应该出现在数轴上,他是一个 二维常数,所以把他定义为超越数。

超越数与无理数之间有什么关系,π是超越
超越数是不能满足任何整系数代数方程的实数。π和e是超越数也是无理数。超越数加减乘除一个无理数仍然是一个超越数,所以无理数和超越数虽然都是无穷个,但是超越数的阶大于无理数的阶。 超越数别无理数要多许多,π和e是两个很简单的例子,是他们的交集 ...

什么是超越数,已知有哪些超越数?
超越数,数学概念,指不是代数数的数。比如π、e。超越数的存在是由法国数学家刘维尔(Joseph Liouville,1809 ~ 1882)在1844年最早证明的。关于超越数的存在,刘维尔写出了下面这样一个无限小数a=0.110001000000000000000001000…(a=1\/10^(1!)+1\/10^(2!)+1\/10^(3!)+…),并且证明取这个...

什么是超越数? 为什么说圆周率是个超越数? 如果圆不存在了, 那么圆周率...
|自然对数的底e=2.718281828…可以证明超越数有无穷个。在实数中除了代数数外,其余的都是超越数。实数可以作如下分类:实数分为实代数数、实超越数。所有超越数构成的集是一个不可数集。这暗示超越数远多于代数数。可是,现今发现的超越数极少,因为要证明一个数是超越数或代数数是十分困难的。

什么是超越数
超越数,这一数学概念独特且引人入胜。它们的本质特征在于,无法通过任何形式的整系数多项式方程来表达。换句话说,超越数不属于代数数的范畴,它们的存在超出了代数方程的描述能力。两个极具代表性的超越数是圆周率π,它的值是一个无尽不循环的小数,即3.14159…;另一个是自然对数的底数e,它的数值...

如何证明π的超越性
所谓超越数,是指不满足整系数多项式方程a0x^n+a1x^(n-1)+……+an-1x+an=0的复数(a0,a1,……,an不全为零)。定理: e 不能满足以代数数作系数或指数的多项式方程式,亦即 c0+c1e^k1+c2e^k2+……+cne^kn≠0 其中 C0,C1,…,Cn(不全为 0),k1,…,kn(非零且相异)均为代数数...

相似回答