微分方程的解通常是一个函数表达式y=f(x),(含一个或多个待定常数,由初始条件确定)。
例如:
其解为:
其中C是待定常数;
如果知道
则可推出C=1,而可知 y=-\cos x+1。
一阶线性常微分方程
对于一阶线性常微分方程,常用的方法是常数变易法:
对于方程:y'+p(x)y+q(x)=0,可知其通解:
然后将这个通解代回到原式中,即可求出C(x)的值。
二阶常系数齐次常微分方程
对于二阶常系数齐次常微分方程,常用方法是求出其特征方程的解
对于方程:
可知其通解:
其特征方程:
根据其特征方程,判断根的分布情况,然后得到方程的通解
一般的通解形式为:
若
则有
若
则有
在共轭复数根的情况下:
r=α±βi
扩展资料
一阶微分方程的普遍形式
一般形式:F(x,y,y')=0
标准形式:y'=f(x,y)
主要的一阶微分方程的具体形式
约束条件
微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。
常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。
若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。
偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。
唯一性
存在性是指给定一微分方程及约束条件,判断其解是否存在。唯一性是指在上述条件下,是否只存在一个解。
针对常微分方程的初值问题,皮亚诺存在性定理可判别解的存在性,柯西-利普希茨定理 [4] 则可以判别解的存在性及唯一性。
针对偏微分方程,柯西-克瓦列夫斯基定理可以判别解的存在性及唯一性。 皮亚诺存在性定理可以判断常微分方程初值问题的解是否存在。
参考资料来源:百度百科-常微分方程
参考资料来源:百度百科-微分方程
此题解法如下:
∵ (1+y)dx-(1-x)dy=0
==>dx-dy+(ydx+xdy)=0
==>∫dx-∫dy+∫(ydx+xdy)=0
==>x-y+xy=C (C是常数)
∴ 此方程的通解是x-y+xy=C。
约束条件
微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。
常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。
若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。
偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。
本回答被网友采纳微分方程的通解公式
微分方程的通解公式:1、一阶常微分方程通解 dydx+p(x)y=0dydx+p(x)y=0。2、齐次微分方程通解 y=ce−∫p(x)dx。3、非齐次微分方程通解 y=e−∫p(x)dx(c+∫q(x)e∫p(x)dxdx)。4、二阶常系数齐次线性微分方程通解 y′′+py′+qy=0(∗),其中p,q为常数求解Δ...
微分方程的通解公式是什么?
微分方程的通解公式:1、一阶常微分方程通解:dydx+p(x)y=0dydx+p(x)y=0.2、齐次微分方程通解:y=ce−∫p(x)dx。3、非齐次微分方程通解:y=e−∫p(x)dx(c+∫q(x)e∫p(x)dxdx)。4、二阶常系数齐次线性微分方程通解:y′′+py′+qy=0(∗),其中p...
微分方程的通解求法
微分方程的通解求法主要有以下几种:一、分离变量法 对于某些微分方程,可以通过将方程中的变量分离来求解。这种方法通常应用于形如“y关于x的函数等式”的微分方程。通过对方程进行适当的变形,将变量分离到等式的两侧,然后分别对两侧进行积分,即可求得通解。二、变量代换法 对于复杂的微分方...
微分方程怎么求通解?
微分方程求通解的方法:1、△=p^2-4q>0,特征方程有两个相异实根λ1,λ2,通解的形式为y(x)=C1*e^(λ1*x)+C2*e^(λ2*x)。2、△=p^2-4q=0,特征方程有重根,即λ1=λ2,通解为y(x)=(C1+C2*x)*e^(λ1*x)。3、△=p^2-4q<0,特征方程具有共轭复根α+-(i...
如何求出微分方程的通解?
求解微分方程的通解可以使用多种方法,以下是一些常见的方法:1. 变量分离法:将微分方程中的变量分开,使得可以将方程两边分别积分,并得到通解。2. 齐次方程法:对于齐次线性微分方程,可以通过分离变量并进行变量代换,将方程转化为可直接积分的形式,从而得到通解。3. 常数变易法:对于某些特殊的微分方程...
微分方程的通解怎么求
一阶线性常微分方程 对于一阶线性常微分方程,常用的方法是常数变易法:对于方程:y'+p(x)y+q(x)=0,可知其通解:然后将这个通解代回到原式中,即可求出C(x)的值。二阶常系数齐次常微分方程 对于二阶常系数齐次常微分方程,常用方法是求出其特征方程的解 对于方程:可知其通解:其特征方程:根...
微分方程的通解怎么求?
全微分方程求通解如下:u(x,y)=P(x,y)dx+Q(x,y)=C全微分方程,又称恰当方程。一、全微分 1、如果函数z=f(x, y) 在(x, y)处的全增量,Δz=f(x+Δx,y+Δy)-f(x,y),可以表示为Δz=AΔx+BΔy+o(ρ)。2、其中A、B不依赖于Δx, Δy,仅与x,y有关,ρ趋近于O(ρ=√...
如何求微分方程的通解?
微分方程的特解形式的求法如下:1、变量离法 变量分离法是求解微分方程的常用方法之一。对于形如f(x,y)dx+g(y)dy=0的微分方程,我们可以尝试将f(x,y)和g(x,y)分别移到方程的两边,然后对两边同时积分,得到一个常数解。这样就完成了变量的分离,从而得到特解。2、齐次方程法 齐次方程法适用...
微分方程怎么求通解
微分方程怎么求通解如下:一、通解求解步骤 通解是指一个微分方程的所有解的集合。通解一般是由一个特解和一个齐次解组成。具体求解通解的步骤如下:1、求解齐次微分方程的通解 这里的齐次微分方程是指将非齐次方程中的所有常数项和已知函数项都归为零,得到的方程。求解齐次微分方程的通解需要将方程化为...
微分方程的通解怎么求?
第一步,先求特征方程r^2-4r+3=0的根,解得r1=3, r2=1。因此齐次方程的通解是Y=C1e^(3x)+C2e^x。又λ=3是特征方程的一个根,因此设非齐次方程的特解y*=(ax^3+bx^2+cx)e^(3x),代入原微分方程,可得6ax+2b+2(3ax^2+2bx+c)=x^2-1. 化简得6ax^2+(6a+4b)x+(2b+2c)...