求不定积分∫(x\/x^2+2x+5)dx解答详细过程 谢谢
具体回答如图:连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
∫1\/(x^2+2x+5)dx =∫1\/[(x+1)²+4] dx =∫1\/[(x+1)²+4] d(x+...
∫ 1\/(x²+a²)dx =1\/a arctan x\/a 对应的x用x+1代替 a用2代替
求不定积分∫(1\/x^2+2x+5)dx,要过程 谢谢
∫1\/(x^2+2x+5)dx =∫1\/[(x+1)^2+4]dx =∫1\/[(x+1)^2+2^2]d(x+1)=(1\/2)arctan[(x+1)\/2]+C
积分公式∫(1\/(x^2+2x+5)) dx
解:∫(1\/(x^2+2x+5))dx =∫1\/[(x+1)^2+4]dx =1\/4∫1\/[((x+1)\/2)^2+1]dx 令(x+1)\/2=t,则x=2t-1 则1\/4∫1\/[((x+1)\/2)^2+1]dx =1\/4∫1\/(t^2+1)d(2t+1)=1\/2∫1\/(t^2+1)dt =1\/2arctant+C 把t=(x+1)\/2代入,得 ∫(1\/(x^2+2x+...
不定积分∫1\/(x^2+2x+5) dx=?
解:∫1\/(x^2+2x+5)dx =∫1\/((x+1)^2+4)dx 令x+1=2tant,则x=2tant-1 那么,∫1\/(x^2+2x+5)dx =∫1\/((x+1)^2+4)dx =∫1\/((2tant)^2+4)d(2tant-1)=1\/4∫1\/(sect)^2d(2tant)=1\/2∫dt=t\/2+C 又因为x+1=2tant,所以t=arctan((x+1)\/2)则∫1\/(x...
换元法求不定积分1\/根号(x^2+2x+5)dx
原式=∫1\/√[(x+1)²+4]d(x+1)设x+1=2tant,t=actan[(x+1)\/2],则√[(x+1)²+4]=√[4(tan²t+1)]=√(4sec²t)=2sect,d(x+1)=2sec²tdt ∴原式=∫1\/√[(x+1)²+4]d(x+1)=∫1\/(2sect)*2sec²tdt =∫sectdt =ln...
∫ [(x+1)\/ (x^2+2x+5) ] d(x) 求学霸指导怎么求积分
上面是第一步的处理过程~下面就套公式就好了 ———精锐教育五角场校区
∫上限1下限-1[1\/(x平方+2x+5)]
∫1\/(x^2+2x+5) dx =∫1\/[(x+1)^2+4] dx =∫1\/4 *1\/[(x\/2+1\/2)^2+1] dx =1\/4* ∫ 1\/[(x\/2+1\/2)^2+1] d(x\/2+1\/2)=1\/4 *arctan(x\/2+1\/2) 代入上下限1和-1 =1\/4 *(arctan1 -arctan0)=1\/4 *π\/4 =π\/16 ...
不定积分(x+1)\/(x^2+2x+5)dx=
x^2+2x+5=(x+1)^2+4, 做个代换u=x+1,原式=∫u\/(u^2+4)du =1\/2∫ 1\/(u^2+4)d(u^2)=1\/2*ln(u^2+4)+C =1\/2*ln[(x+1)^2+4]+C =1\/2*ln(x^2+2x+5)+C
求不定积分∫x\/(x^2+2x+5)dx
x+1 = 2tanu dx=2(secu)^2 du ∫x\/(x^2+2x+5) dx =(1\/2) ∫(2x+2)\/(x^2+2x+5) dx -∫dx\/(x^2+2x+5)=(1\/2)ln|x^2+2x+5| -∫dx\/(x^2+2x+5)=(1\/2)ln|x^2+2x+5| -∫2(secu)^2 \/[4(secu)^2 ] du =(1\/2)ln|x^2+2x+5| -(1\/2)u +C =...