已知函数f(x)=lnx-ax+2x(a∈R).(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ

已知函数f(x)=lnx-ax+2x(a∈R).(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若函数y=f(x)在定义域内是减函数,求a的取值范围.

无其他回答

已知函数f(x)=lnx-ax+2x(a∈R).(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f...
2x2∴f′(1)=-2∴切线方程为y-1=-2(x-1),即2x+y-3=0.(Ⅱ)函数f(x)的定义域为(0,+∞),f′(x)=1x?a?2x2∵函数y=f(x)在定义域内是减函数∴f′(x)=1x?a?2x2≤0在(0,+∞)上恒成立,即a≥1x?2x2=x?2x2在(0,+∞)上恒成立,设g(x)=x?2x2...

...Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ
(Ⅰ)当a=1时,f(x)=x2-3x+lnx,f′(x)=2x?3+1x.∵f′(1)=0,f(1)=-2,∴曲线y=f(x)在点(1,f(1))处的切线方程是y=-2;(Ⅱ)函数f(x)=ax2-(a+2)x+lnx的定义域是(0,+∞).当a>0时,f′(x)=2ax?(a+2)+1x=2ax2?(a+2)x+1x,(...

已知函数f(x)=lnx+ax+1-a2(a∈R)(1)当a=2时,求函数f(x)在点P(1,f(1...
(1)解:当a=2时,f(x)=lnx+2x+1?1,f′(x)=1x?2(x+1)2 (x>0),∴k=f′(1)=12.由f(1)=0,∴求函数f(x)在点P(1,f(1))处的切线方程为x-2y-1=0;(2)解:∵f(x)=lnx+ax+1-a2,∴f′(x)=1x?a(x+1)2=(x+1)2?axx(x+1)2 (x>0...

函数f(x)=lnx-ax+(1\/2)x^2 当a=1时,求f(x)在点(1,f(1))处的切线方程
当a=1时,f(x)=lnx-x+(1\/2)x^2,所以,f(1)=-1+1\/2=-1\/2,f '(x)=1\/x-1+x,所以 k=f '(1)=1\/1-1+1=1,因此,所求的切线方程为 y+1\/2=x-1,即 2x-2y-3=0。

...1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(
(Ⅰ)当a=-1时,f(x)=lnx+x+2x-1,x∈(0,+∞),所以f′(x)=1x+1-2x2,因此,f′(2)=1,即曲线y=f(x)在点(2,f(2))处的切线斜率为1,又f(2)=ln2+2,y=f(x)在点(2,f(2))处的切线方程为y-(ln2+2)=x-2,所以曲线,即x-y+ln2=0;(Ⅱ...

...ax+1?ax?1(a∈R),当a=-1时,求曲线y=f(x)在点(2,f(2))处的切线方程...
当a=-1时,f(x)=lnx+x+2x?1,x∈(0,+∞),∴f′(x)=1x+1?2x2.∴f′(2)=12+1?24=1,即曲线y=f(x)在点(2,f(2))处的切线斜率为1,又f(2)=ln2+2,所以曲线y=f(x)在点(2,f(2))处的切线方程为:y-(ln2+2)=x-2.即x-y+ln2=0.

...a∈R).(Ⅰ)当a=1时,求f(x)在点(1,f(1))处的切线方程;(Ⅱ)_百度知...
解答:(本小题满分14分)解:(I)当a=1时 f(x)=lnx-x2+xf′(x)=1x?2x+1….(3分)∴f(1)=0,f′(1)=0即:所求切线方程为:y=0….(6分)(II)∵f′(x)=1x?2ax+a=?2ax2+ax+1x,x>0∴当a=0时,f′(x)>0,f(x)在[1,2]上递增∴f(x)...

...lnx+ax+a+1x?1.(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程...
(1)当a=1时,f(x)=lnx+x+2x?1,此时f′(x)=1x+1?2x2f′(2)=12+1?24=1,又f(2)=ln2+2+22?1=ln2+2,∴切线方程为:y-(ln2+2)=x-2,整理得:x-y+ln2=0; (2)f′(x)=1x+a?1+ax2=ax2+x?a?1x2=(ax+a+1)(x?1)x2,当a=0时,f′(x)=...

已知函数f(x)=lnx-ax+1?ax-1(a∈R)(1)当a=-1时,求曲线y=f(x)在(2...
(1)当a=-1时y=lnx+x+2x?1(x>0),∴y′=1x+1?2x2,∵f'(2)=1,∴切线方程:y=x+ln2,(2)y′=?(x?1)(ax+a?1)x2(x>0)①a=0时,f(x)在(0,1)单调递减,在(1,+∞)单调递增;②0<a<12时,f(x)在(0,1)单调递减,(1,1?aa)单调递增,在...

已知函数f(x)=lnx-ax+1?ax-1(a∈R).(Ⅰ)当a=1时,求f(x)在点(1,-2...
解答:(Ⅰ)解:当a=1时,f(x)=lnx-x-1,f′(x)=1x?1,∵点(1,-2)在函数图象上,∴在点(1,-2)的切线斜率为k=f′(1)=0,∴所求切线方程为y=-2;(Ⅱ)解:∵f(x)=lnx?ax+1?ax?1(a∈R),∴f′(x)=1x?a?1?ax2=?ax2?x+1?ax2,x∈(0,+∞),令...

相似回答