已知1/x+1/y=2,则2x-3xy+2y/x+2xy+y的值为?

答案是1/4.要求写出过程并说明理由。。
还有一题已知绝对值a/a的平方-a=1/1-a
则a的取值范围是。

(2x-3xy+2y)/(x+2xy+y)......分子分母同时除以xy
=(2/y-3+2/x)/(1/y+2+1/x)
=(4-3)/(2+2)
=1/4

│a│/(a^2-a)=1/(1-a)
因为当a>0时,
│a│/(a^2-a)=1/(a-1)≠1/(1-a)
所以a<0,此时│a│/(a^2-a)=-a/(a^2-a)=-1/(a-1)=1/(1-a)
温馨提示:内容为网友见解,仅供参考
无其他回答

已知1\/x+1\/y=2,则2x-3xy+2y\/x+2xy+y的值为?
(2x-3xy+2y)\/(x+2xy+y)...分子分母同时除以xy =(2\/y-3+2\/x)\/(1\/y+2+1\/x)=(4-3)\/(2+2)=1\/4 │a│\/(a^2-a)=1\/(1-a)因为当a>0时,│a│\/(a^2-a)=1\/(a-1)≠1\/(1-a)所以a<0,此时│a│\/(a^2-a)=-a\/(a^2-a)=-1\/(a-1)=1\/(1-a)

若1\/x+1\/y=2 则分式2x+3xy+2y\/x-y+y的值是
解:1\/x+1\/y=2 (x+y)\/(xy)=2 x+y=2xy (2x+3xy+2y)\/(x-xy+y)=[2(x+y)+3xy]\/[(x+y)-xy]=(2·2xy+3xy)\/(2xy-xy)=7xy\/(xy)=7 (2x+3xy+2y)\/(x-xy+y)的值为7。总结:解题思路:①先求出x+y、xy的关系式。②再在所求分式中构造x+y、xy,从而求得分式的值。

若1\/x+1\/y=2,则分式(2x+3xy+2y)\/(x+2xy+y)的值为
第二步,分子分母同时除以xy

若x分之1+y分之1=2,则分式x+2xy+y分之2x+3xy+2y的值为?
则通分 x+y\/xy=2 则 x+y=2xy 所以所求分式 2x+3xy+2y \/ x+2xy+y =[2(x+y)+3xy] \/ [(x+y)+2xy]=7xy\/4xy =7\/4 不明白欢迎追问

若1\/x+1\/y=2,则2x-xy+2y\/3x+5y+3y=
就是利用的整体的代入法!!解:因为1\/x+1\/y=2 所以x+y=2xy (2x-xy+2y)\/(3x+5xy+3y)=[2(x+y)-xy]\/[3(x+y)+5xy]将x+y=2xy代入上面的式子:=[4xy-xy]\/[6xy+5xy]=3xy\/11xy =3\/11

如果1\/x+1\/y=2求3x+2xy+3y\/2x-3xy+2y的值
3x+2xy+3y\/2x-3xy+2y=(3\/y+2+3\/x)\/(2\/y+2\/x-3)=8\/(4-3)=8

已知1\/x+1\/y=3,则分式2x+3xy+2y\/x-2xy+y的值为
1\/x+1\/y=(x+y)\/xy=3 即 x+y=3xy (2x+3xy+2y)\/(x-2xy+y)=(2*3xy+3xy)\/(3xy-2xy)=9xy\/xy=9

若1\/x+1\/y=2,则(3x+2xy+3y)\/(x-xy+y)的值是
1\/x+1\/y=2 ∴y+x=2xy ∴x+y=2xy (3x+2xy+3y)\/(x-xy+y)=[3(x+y)+2xy]\/[(x+y)-xy] x+y用2xy代替 =(6xy+2xy)\/(2xy-xy)=8xy\/xy =8

已知1\/x+1\/y=5,求分式2x-3xy+2y\/x+2xy+y的值
∵1\/x+1\/y=5 ∴(2x-3xy+2y)\/(x+2xy+y)=(2\/y-3+2\/x)\/(1\/y+2+1\/x) ...【分子分母同除以xy】={2(1\/x+1\/y)-3}\/{(1\/x+1\/y)+2} =(2*5-3)\/(5+2)=7\/7 =1

已知1\/x+1\/y=3,则2x-3xy+2y\/x+xy+y=谢谢了,大神帮忙啊
由1\/x+1\/y=3可知,y+x\/xy=3(通分求得)即x+y=3xy.又因为需求的代数式可变为:原式=2(x+y)-3xy\/(x+y)+xy 将x+y=3xy带入上式,得原式=6xy-3xy\/3xy+xy=3xy\/4xy=3\/4=0.75 满意请采纳

相似回答
大家正在搜