已知x+y=3,x2+y2-xy=4,那么x4+y4+x3y+xy3的值为______

已知x+y=3,x2+y2-xy=4,那么x4+y4+x3y+xy3的值为______.

∵x+y=3,x2+y2-xy=4,
∴x4+y4+x3y+xy3
=x3(x+y)+y3(x+y),
=(x3+y3)(x+y),
=(x+y)(x2+y2-xy)(x+y),
=32×4,
=36.
故答案为:36.
温馨提示:内容为网友见解,仅供参考
第1个回答  推荐于2016-05-20
解:x+y=3 x²+y²+2xy=9 (1)
x²+y²-xy=4 (2)
(1)-(2)得 3xy=5 x²+y²=4+5/3=17/3
( x²)²+(y²)²+x³y+xy³
=(x²+y²)²-2x²y²+xy(x²+y²)
=(17/3)²-2(5/3)²+5/3·17/3
=289/9-50/9+85/9
=(289-50+85)/9
=324/9=36
∴ x4+y4+x3y+xy3=36

已知x+y=3,x2+y2-xy=4,那么x4+y4+x3y+xy3的值为__
∵x+y=3,x2+y2-xy=4,∴x4+y4+x3y+xy3,=x3(x+y)+y3(x+y),=(x3+y3)(x+y),=(x+y)(x2+y2-xy)(x+y),=32×4,=36.故答案为:36.

已知x+y=3,x平方+y平方-3xy=4,则x三次方y+xy三次方=多少
∵X+Y=3,∴(X+Y)^2=9,即X^2+2XY+Y^2=9,∵x^2+y^2-3xy=4 ∴XY=1(以上两式相减)∴X^2+Y^2=7 ∵x^3y+xy^3=XY(X^2+Y^2)=1*7=7 (因式分解)本题考察的整体代入法,将所求的式子变形为已知的式子。常用变形方法之一:因式分解 ...

已知x+y=3,x2+y2-xy=4,求x4次方+y4次方+x3次方y+xy的3次方值
=(x+y)²(x²-xy+y²)=3²*4 =36

x+y=3,x^2+y^2-3xy=4,则x^3y+xy^3的值为?
所以x^2+y^2-3xy=9-5xy=4 所以xy=1 x^3y+xy^3=xy(x^2+y^2)=x^2+y^2=7

已知x+y=3,x2+y2-3xy=4.求下列各式的值:(1)xy; (2)x3y+xy3
(1)∵x+y=3,∴(x+y)2=9,∴x2+y2+2xy=9,∴x2+y2=9-2xy,代入x2+y2-3xy=4,∴9-2xy-3xy=4,解得:xy=1.(2)∵x2+y2-3xy=4,xy=1,∴x2+y2=7,又∵x3y+xy3=xy(x2+y2),∴x3y+xy3=1×7=7.

已知x+y=3,x的平方+y的平方-xy=4,则x的4次方+y的4次方+x的3次方y+...
x的三次方+y的三次方=(x+y)×(x的平方+y的平方-xy)=3×4=12;题中所求:x的4次方+y的4次方+x的3次方y+xy的3次方 =x的三次方×(x+y)+y的三次方×(x+y)=(x+y)×(x的三次方+y的三次方)=3×12 =36

已知x+y=3,x⊃2;+y⊃2;-3xy=4,则x⊃3;y+xy⊃3;的值为_百度知 ...
x³y﹢xy³=xy﹙x²﹢y²﹚=xy﹙4﹢3xy﹚∵x²﹢y²﹣3xy=[﹙x﹢y﹚²﹣2xy]﹣3xy=4 ∴xy=1 把xy=1代入 x³y﹢xy³ =xy﹙4﹢3xy﹚,得:1×﹙4﹢3﹚=7

已知x+y=3,x的平方+y的平方-xy=4,则x的3次方y+xy的3次方的值为_百度知...
∵x+y=3 两边平方 x²+2xy+y²=9 ① ∵x²+y²-xy=4 ② ①-②:3xy=5,∴xy=5\/3 ,x²+y²=4+5\/3=17\/3 x的3次方y+xy的3次方 =xy(x²+y²)=5\/3*17\/3 =85\/9 ...

已知:x+y=3,x^2+y^2+xy=8,则x^4+y^4+3x^4y+3xy^4的ŀ
x+y=3,x^2+y^2+xy=(x+y)^2-xy=9-xy=8,xy=1,所以x^2+y^2=(x+y)^2-2xy=7,x^3+y^3=(x+y)(x^2-xy+y^2)=3*6=18,x^4+y^4=(x^2+y^2)^2-2(xy)^2=49-2=47,于是x^4+y^4+3x^4y+3xy^4 =47+3xy(x^3+y^3)=47+3*18 =47+54 =101....

已知:x+y=3,x^2+y^2+xy=8,则x^4+y^4+3x^4y+3xy^4的值?
x+y=3 两边平方得x^2+y^2+2xy=9 又x^2+y^2+xy=8 两式相减得xy=1 代入得x^2+y^2=7 两边平方得x^4+y^4+2x^2y^2=49 所以x^4+y^4=47 x^4+y^4+3x^4y+3xy^4 =(x^4+y^4)+3xy(x^3+3xy^3)=47+3(x+y)(x^2-xy+y^2)=47+3×3(7-1)=101 ...

相似回答