拉普拉斯定理计算行列式

如题所述

第1个回答  2016-10-11
按第1列展开,得到
a*D3+D2

=a(bD2+d)+D2
=(ab+1)D2+ad
=(ab+1)(cd+1)+ad
=abcd+cd+ab+ad+1本回答被提问者和网友采纳

拉普拉斯定理求行列式
拉普拉斯定理求行列式如下:其中任意取定 k 行(列),1≤ k ≤ n -1,由这 k 行(列)的元素所构成的一切 k 阶子式与其代数余子式的乘积的和等于行列式 D 的值。拉普拉斯公式1、拉普拉斯公式是关于行列式的展开式,也称为拉普拉斯展开或拉普拉斯定理。它可以用来计算行列式的值。2、将一个nxn矩...

拉普拉斯行列式公式是什么?
拉普拉斯行列式的每一项和对应的代数余子式的乘积之和仍然是B的行列式。研究一些特定的展开可以减少对于矩阵B之行列式的计算,拉普拉斯公式也常用于一些抽象的推导中。行列式不仅仅可以按一行展开,也可以按k行展开。这就是拉普拉斯定理。与行列式按一行展开相似,我们需要选中k行,列则是在k列中取k列那么,...

拉普拉斯定理计算行列式
=abcd+cd+ab+ad+1

拉普拉斯行列式公式
拉普拉斯定理亦称行列式按k行展开定理,是计算降阶行列式的一种方法。该定理断言:在n阶行列式D=|aij|中,任意取定k行(列),1小于等于k小于等于n-1,由这k行(列)的元素所构成的一切k阶子式与其代数余子式的乘积的和等于行列式D的值。拉普拉斯定理于1773年由拉普拉斯从范德孟规则推广提出,于1812...

行列式怎么计算?
解答过程如下:首先问题要求用拉普拉斯定理,要明确拉普拉斯定理的公式为D=M1A1+…+MtAt,M1,M2…为任取行所得到的行列式,然后再分别求所对应的代数余子式,进行行列式的计算就可以。第二道行列式我用的是初等变换,将行列式转换为上三角形行列式,根据公式直接用对角线上的数相乘即可得到答案。

利用拉普拉斯定理,计算下列行列式:
【答案】:10$abc-x(bc+ca+ab)$(x4-x3)[(x3-x2)(x4-x2)-2(x3-x1)(x4-x1)]

拉普拉斯定理行列式
拉普拉斯定理

用拉普拉斯展开定理计算行列式
D = (a^2-b^2)^n 这是按拉普拉斯展开定理展开的方法。

行列式展开定理及推论公式
行列式展开定理即拉普拉斯展开定理,指的是如果行列式的某一行(列)是两数之和,则可把它拆分成两个行列式再求和。行列式的某一行(列)的元素与另一行(列)对应元素的代数余子式乘积之和等于零。比如:行列式 D=|a11 a12 a13 a14| |a21 a22 a23 a24| |a31 a32 a33 a34| |a41 a42 a43 a...

行列式怎么展开?
行列式按行展开的定理是拉普拉斯定理的一种简单情况,该行各元素分别乘以相应代数余子式求和,就等于行列式的值。如果行列式D的第i行各元素与第j行各元素的代数余子式对应相乘后再相加,则当i≠j时,其和为零,行列式依行或依列展开,不仅对行列式计算有重要作用,且在行列式理论中也有重要的应用。比如...

相似回答