已知数列{an}的前n项和为Sn=1/2n2+1/2n(n?n*)(1)求数列{an}的通项公式。(2)记T=1/s1+1/s2+1/s3+…+1/s99.求T的值
...数列{an}的通项公式。(2)记T=1\/s1+1\/s2+1\/s3+…+1\/s...
an=Sn-Sn-1=[1\/2n2+1\/2n]-[1\/2(n-1)^2+1\/2(n-1)]=n an=n Sn=1\/2n2+1\/2n 1\/Sn=2\/n(n+1)=2[1\/n-1\/n+1](2)记T=1\/s1+1\/s2+1\/s3+…+1\/s99=2[1-1\/2+1\/2-\/13+……+1\/99-1\/100]=2*(1-1\/100)=99\/50 ...
...数列{an}的通项公式。(2)记T=1\/s1+1\/s2+1\/s3+…+1\/s201
an=Sn-S(n-1)=[(1\/2)n²+(1\/2)n]-[(1\/2)(n-1)²+(1\/2)(n-1)]=n (n≥2),当n=1时,a1=1也满足,所以an=n。Sn=(1\/2)[1\/n-1\/(n+1)],所以T=(1\/2)[1\/1-1\/202]=201\/404。
...Sn=1\/2n^2+1\/2 (n属于整数) (1)求{an}的通项公式;(2)记T=1\/s1+1...
an=S(n+1)-Sn=1\/2(n+1)^2+1\/2-1\/2n^2-1\/2=n+1\/2 1\/Sn=2\/(n^2+1)再用一次求和就可以了
已知数列{an}的前n项和为Sn=1\/2n(n+1).(1)求数列{an}的通项公式,(2...
an=Sn-S(n-1)=1\/2n(n+1)-1\/2(n-1)n=n 当n=1时,上式也成立 ∴数列{an}的通项公式an=n (2)∵2bn-b(n-1)=0∴bn\/b(n-1)=1\/2 ∴{bn}为等比数列,公比为1\/2,又b1=1 ∴bn=1\/2^(n-1)cn=n\/2^(n-1)Tn=1+2\/2^1+3\/2^2+4\/2^3+...+n\/2^(n-1) --...
已知数列{an}的前n项和为Sn,且a1=1\/2,a(n+1)=(n+1)an\/2n,(1)求{an}...
an\/n=(1\/2)(1\/2)^(n-1)=1\/2ⁿan=n\/2ⁿ数列{an}的通项公式为an=n\/2ⁿ(2)Sn=a1+a2+a3+...+an=1\/2+2\/2²+3\/2³+...+n\/2ⁿSn \/2=1\/2²+2\/2³+...+(n-1)\/2ⁿ+n\/2^(n+1)Sn -Sn\/2=Sn \/2=1\/2+1\/...
设数列{an}的前n项和为Sn,已知a1=1,Sn+1=2Sn+n+1(n∈N*),(Ⅰ)求数列...
(Ⅰ)∵Sn+1=2Sn+n+1(n∈N*)当n≥2时,Sn=2Sn-1+n,两式相减得,an+1=2an+1,两边加上1得出an+1+1=2(an+1),又S2=2S1+1,a1=S1=1,∴a2=3,a2+1=2(a1+1)所以数列{an+1}是公比为2的等比数列,首项a1+1=2,数列{an+1}的通项公式为an+1=2?2n-1=2n,∴...
已知数列{an}的前n项和为Sn,且a1=1\/2,a(n+1)=(n+1)an\/2n,(1)求{an}...
a(n+1)\/(n+1)=(1\/2)(an\/n){an\/n}是等比数列,q=1\/2 an\/n=(1\/2)^(n-1).(a1\/1)=(1\/2)^n an=n.(1\/2)^n (2)let S=1.(1\/2)^1+2(1\/2)^2+...+n.(1\/2)^n(1)(1\/2)S=1.(1\/2)^2+2(1\/2)^3+...+n.(1\/2)^(n+1)(2)(1)-(2)(1\/2)S=(...
...+1\/2an-1(n属于N*)(1)求数列{an}的通项公式(2)若bn=2的
an - a(n-1) =1 an -a1 = n-1 an= n+1 (2)bn= 2^n cn = anbn = (n+1)2^n = 2(n.2^(n-1)) + 2^n Tn = c1+c2+..+cn = 2{ summation(i:1->n)(i.2^(n-1))} + 2(2^n-1)consider 1+x+x^2+..+x^n = (x^(n+1)-1)\/(x-1)1+2x+...+nx...
...和Sn=n(n+1)\/2 (n∈N*) (1)求数列{an}的通项公式 (2)设数列{bn}满...
a(n) = S(n) - S(n-1)a(n) = n(n+1)\/2 - (n-1)n\/2 = n (2)(2an-1)(2^(bn)-1) = 1 (2n - 1)(2^(bn)-1) = 1 2^(bn)-1 = 1\/(2n - 1)2^(bn) = 2n\/(2n - 1)b(n) = log(2)[2n\/(2n - 1)]T(n) = b(1) + b(2) +...+ b(n)T...
...=2,Sn=n2+n, (1)求数列{an}的通项公式 (2)设{1\/Sn}的前n项和为Tn...
(1)n≥2时,an=Sn-S(n-1)=n²+n-(n-1)²-(n-1)=2n.又a1=2,所以an=2n.(2)1\/Sn=1\/[n(n+1)]=1\/n-1\/(n+1).所以Tn=(1-1\/2)+(1\/2-1\/3)+...+[1\/n-1\/(n+1)]=1-1\/(n+1)<1.