证明sin(a+b)sin(a-b)=(sina+sinb)(sina-sinb)
提取公因式 只须证 (1-cosa*cosa)sinb*sinb=(1-cosb*cosb)sina*sina 即证 sina*sina*sinb*sinb=sinb*sinb*sina*sina 这个不用证了,一看就知道它成立,所以sin(a+b)sin(a-b)=(sina+sinb)(sina-sinb)也成立
高中数学:为什么(sinA+sinB)(sinA-sinB)=sin(A+B)*sin(A-B)_百度知...
提取公因式 得 (1-cosa*cosa)sinb*sinb=(1-cosb*cosb)sina*sina 即 sina*sina*sinb*sinb=sinb*sinb*sina*sina 这个很明显任意时候都成立,即证 (sina*cosb+cosa*sinb)(sina*cosb-cosa*sinb)=(sina+sinb)(sina-sinb)所以sin(a+b)sin(a-b)=(sina+sinb)(sina-sinb)也成立 您好,很高...
求证:sin(A+B)sin(A-B)=sinAsinA-sinBsinB
解:令a=A,b=B 则 sin(A+B)sin(A-B)-(sinAsinA-sinBsinB)=(sinacosb+cosasinb)(sinacosb-cosasinb)-(sinAsinA-sinBsinB)=sin^2acos^2b-cos^2asin^2b-sin^2a+sin^2b =sin^2a(cos^2b-1)-sin^2b(cos^2a-1)=(cos^2a-1)sin^2b-sin^2b(cos^2a-1)=0 所以命题得证 所以sin(...
(sinA-sinB)(sinA+sinB)推出sin(A+B)sin(A-B)
(sina-sinb)(sina+sinb)=(sina)^2-(sinb)^2 (平方差公式)=(1-cos2a)\/2-(1-cos2b)\/2 (二倍角公式)=1\/2*(cos2b-cos2a) (合并)=1\/2*{cos[(a+b)-(a-b)]-cos[(a+b)+(a-b)]} (化角 2a=(...
和差化积公式sin(α+β)·sin(α-β)怎么推导?
1)正弦函数和差化积公式:sin(A ± B) = sinA·cosB ± cosA·sinB 2)余弦函数和差化积公式:cos(A ± B) = cosA·cosB ∓ sinA·sinB 3)正切函数和差化积公式:tan(A ± B) = (tanA ± tanB) \/ (1 ∓ tanA·tanB)2. 知识点运用:三角函数和差化积公式在解三角...
证明sin(a+b)sin(a-b)=sin²a-sin² b,并用该式计算sin²20°+s...
sin(a+b)sin(a-b)=(sinacosb+sinbcosa)(sinacosb-sinbcosa)=(sinacosb)^2+sinasinbcosacosb-sinasinbcosacosb-(sinbcosa)^2 =(sinacosb)^2-(1-sin^2a)(1-cos^2b)=(sinacosb)^2-[1-sin^2a-cos^2b+(sinacosb)^2]=-1+sin^2a+(1-sin^2b)=sin^2 a-sin^2 b sin²20°...
sin(α+β)+ sin(α-β)等于什么?
sin(A+B)= sinAcosB+cosAsinB……(1)sin(A-B)= sinAcosB-cosAsinB……(2)(1)+(2)可得:2sinAcosB = sin(A+B)+ sin(A-B)A=(x-a)\/2 B=(a+x)\/2 A+B= x A-B= a sinx+sina=2sin[(x-a)\/2]cos[(a+x)\/2]
如何推导sin(a+b) sin(a-b) tan(a+b) 怎么推导出来 就用公式 不画图...
不是这样推啊。是用向量乘法推出来的。两个单位向量 m=(sin a, cos a),n=(sin b, cos b)|m|=|n|=1 两个向量相乘求数量积,有两种方法啊:m*n=sin a sinb +cos a cos b {坐标法} =|m||n|cos (a-b)于是 cos (a-b)=sina sinb+ cos a cosb cos (a +b) =cos a...
证明sin(α+β)sin(α-β)=sinα-sinβ
sin(a+b)=sina.cosb+cosa.sinb sin(a-b)=sina.cob-cosa.sinb 联合公式 (A+B)*(A-B)=A-B 得: 设 sina.cob=A cosa.sinb=B 即: sin(a+b)*sin(a-b)=(sina.cosb+cosa.sinb)*(sina.cob-cosa.sinb)=(A+B)*(A-B)=A-B =sinα-sinβ ...
证明sin(A+B)cos(A-B)=sinAcosA+sinBcosB
sin(a+b)cos(a-b)=(sinacosb+cosasinb)(cosacosb+sinasinb)=sinacosa(cosb)^2+(cosa)^2sinbcosb+(sina)^2sinbcosb+sinacosa(sinb)^2 =sinacosa(cosb)^2+sinacosa(sinb)^2+(cosa)^2sinbcosb+(sina)^2sinbcosb =sinacosa+sinbcosb ...