为什么说函数有原函数不一定可积呢?
因为有原函数和可积分根本就是两个概念,我们所谓的由原函指的得是不定积分,如果f(x)可导则,f(x)一定连续, 可到的必要条件反过来不然,于是f(x)连续就一定有原函数,反之不对,(有原函数充分条件条件)所以我们说有第一类间断点的函数必然没有原函数 。如果函数间断就必然是有限个第二类间...
为什么有原函数存在不一定可积分?
有原函数存在则函数不一定可积分(函数为f(x),原函数为F(x),该命题要在函数f(x)在定义域内连续才可积分。处有无界间断,这只需要注意这一项就够了。这样一来,在上就不可积,因为无界函数没有黎曼积分。闭区间 直线上介于固定的两点间的所有点的集合(包含给定的两点)。 闭区间是直线上的连通...
请问函数可积与原函数存在的关系
可积和原函数存在完全两个概念。可积但原函数不一定存在,原函数存在不一定可积,二者没有必然关系。可积的充分条件:函数连续或函数在区间上有界且有有限个间断点。或函数在区间单调。原函数存在的充分条件:连续。另外函数含有第一类间断点,那么不存在原函数,含无穷型的间断点也不存在原函数。问题一...
为什么函数f(x)可积,但是它的原函数不一定可积
若函数 ff 在 [a, b] 上可积,则 ff 在 [a, b] 上必有界; 反证法,逆否命题,无界 ⇒ 不可积;可积函数一定有界,有界函数不一定可积(比如狄利克雷函数,全取有理数,全取无理数,趋于不同的值,1和0); 有界是可积的必要条件。要判断一个函数是否可积,固然可以根据定义,...
原函数存在和可积的区别
可积和存在原函数的区别在于存在原函数的话,就一定可积,用牛莱公式就可以计算出积分值,可积分就是能算面积,反常积分如果可能可积,但不存在原函数。可积函数是存在积分的函数。除非特别指明,一般积分是指勒贝格积分。否则,称函数为黎曼可积(也即黎曼积分存在),或者Henstock-Kurzweil可积等等。给...
有原函数不一定可积吗?
有原函数不一定可积的,有些函数它虽然有原函数但是对其积分后,但不能用初等函数来表示。我们在现阶段就说它不可积。f(x)在[a,b]上有原函数是指:F(x)的导数是f(x).f(x)在[a,b]上可积是指:黎曼和(积分和)S总有一个确定的极限。若f(x)在[a,b]上有原函数,并且连续,那么f(...
关于原函数和可积的关系(求助)
不过这个问题 我承认我确实错了有原函数的函数不一定可积“原函数存在是一个局部性质,我们可以说某函数在某一点存在原函数,但是不能在一点上讨论函数的可积性。但如果在某个区间上原函数存在,那么一定可积,因为有N-L公式。”“即使被积函数在区间上有原函数,也未必可积,因为N-L公式是要求被...
存在原函数一定可积吗?
函数可积不一定存在原函数。按条件的强度来说,可积是个较弱的条件,因为可积的充分条件是“在闭区间上有界且只有有限个间断点。”可积的条件:可积的必要条件就是函数有界。函数可积,只能知道他的变限积分所构造的函数连续。连续是比可积稍强的条件,也就是说,闭区间连续一定可积,且必有原函数...
若函数在区间上有原函数,这函数是否在该区间上一定可积?
【答案】:不一定.例如函数容易知道F(x)在(-∞,+∞)上可导,且即函数f(x)在(-∞,+∞)上有原函数F(x),但由于函数f(x)在x=0的任一邻域内无界,故函数f(x)在包含x=0的区间上不可积.
原函数存在与函数可积这个怎么理解?
第一,两者绝对不等价,原函数存在不一定可积,譬如,F(X)的导数为f(x),但是f(x)是无界的,当然不可积,这样的例子是存在的,我手里有很多,建议数字符号不好输,我就不列举了。第2,可积不一定存在原函数,因为当f(x)有界,且存在有限个间断点是可积的,但是一旦这个间断点是第一类间断点...