为什么说函数有原函数不一定可积呢?

如题所述

今年考研,前两天因为这个问题头都大了,然后仔细的看了好多遍恍然大悟,希望我能说明白,这是第二次回答类似问题了
因为有原函数和可积分根本就是两个概念,我们所谓的由原函指的得是不定积分,
如果f(x)可导则,f(x)一定连续, 可到的必要条件反过来不然,
于是f(x)连续就一定有原函数,反之不对,(有原函数充分条件条件)
所以我们说有第一类间断点的函数必然没有原函数 。如果函数间断就必然是有限个第二类间断点,这里的有原函数指的是不定积分,是导数的逆运算
再说可积的问题,我们说的可积指的是再定积分里面算面积时候的可积的一个概念,是在某一区间内对一个函数F(x)做不定积分,则我们说这个函数可以有原函数也可以没有,只是针对该曲线进行积分,于是如果有第一类间断点我们可以将函数分段,注意第一间断点是由左右极限不相等的间断点,当我们分段处理再相加之后便可以得到这一区域的面积,于是我们说如果函数可以积则该函数是否连续无所谓,但是如果有间断点一定是有限个第一类的间断点,如果函数有第二类间断点是不可积的因为第二类间断点是指向于无穷所以我们没办法求面积于是不可积

所以我们说这个有原函数与否相对于不定积分, 而是否可积则是定积分
我想你应该也知道定积分和不定积分本身也是两个不同的东西,而且这一个是函数一个是一个数,于是乎你明白了么?
温馨提示:内容为网友见解,仅供参考
无其他回答

为什么说函数有原函数不一定可积呢?
因为有原函数和可积分根本就是两个概念,我们所谓的由原函指的得是不定积分,如果f(x)可导则,f(x)一定连续, 可到的必要条件反过来不然,于是f(x)连续就一定有原函数,反之不对,(有原函数充分条件条件)所以我们说有第一类间断点的函数必然没有原函数 。如果函数间断就必然是有限个第二类间...

为什么有原函数存在不一定可积分?
有原函数存在则函数不一定可积分(函数为f(x),原函数为F(x),该命题要在函数f(x)在定义域内连续才可积分。处有无界间断,这只需要注意这一项就够了。这样一来,在上就不可积,因为无界函数没有黎曼积分。闭区间 直线上介于固定的两点间的所有点的集合(包含给定的两点)。 闭区间是直线上的连通...

请问函数可积与原函数存在的关系
可积和原函数存在完全两个概念。可积但原函数不一定存在,原函数存在不一定可积,二者没有必然关系。可积的充分条件:函数连续或函数在区间上有界且有有限个间断点。或函数在区间单调。原函数存在的充分条件:连续。另外函数含有第一类间断点,那么不存在原函数,含无穷型的间断点也不存在原函数。问题一...

为什么函数f(x)可积,但是它的原函数不一定可积
若函数 ff 在 [a, b] 上可积,则 ff 在 [a, b] 上必有界; 反证法,逆否命题,无界 ⇒ 不可积;可积函数一定有界,有界函数不一定可积(比如狄利克雷函数,全取有理数,全取无理数,趋于不同的值,1和0); 有界是可积的必要条件。要判断一个函数是否可积,固然可以根据定义,...

原函数存在和可积的区别
可积和存在原函数的区别在于存在原函数的话,就一定可积,用牛莱公式就可以计算出积分值,可积分就是能算面积,反常积分如果可能可积,但不存在原函数。可积函数是存在积分的函数。除非特别指明,一般积分是指勒贝格积分。否则,称函数为黎曼可积(也即黎曼积分存在),或者Henstock-Kurzweil可积等等。给...

有原函数不一定可积吗?
有原函数不一定可积的,有些函数它虽然有原函数但是对其积分后,但不能用初等函数来表示。我们在现阶段就说它不可积。f(x)在[a,b]上有原函数是指:F(x)的导数是f(x).f(x)在[a,b]上可积是指:黎曼和(积分和)S总有一个确定的极限。若f(x)在[a,b]上有原函数,并且连续,那么f(...

关于原函数和可积的关系(求助)
不过这个问题 我承认我确实错了有原函数的函数不一定可积“原函数存在是一个局部性质,我们可以说某函数在某一点存在原函数,但是不能在一点上讨论函数的可积性。但如果在某个区间上原函数存在,那么一定可积,因为有N-L公式。”“即使被积函数在区间上有原函数,也未必可积,因为N-L公式是要求被...

存在原函数一定可积吗?
函数可积不一定存在原函数。按条件的强度来说,可积是个较弱的条件,因为可积的充分条件是“在闭区间上有界且只有有限个间断点。”可积的条件:可积的必要条件就是函数有界。函数可积,只能知道他的变限积分所构造的函数连续。连续是比可积稍强的条件,也就是说,闭区间连续一定可积,且必有原函数...

若函数在区间上有原函数,这函数是否在该区间上一定可积?
【答案】:不一定.例如函数容易知道F(x)在(-∞,+∞)上可导,且即函数f(x)在(-∞,+∞)上有原函数F(x),但由于函数f(x)在x=0的任一邻域内无界,故函数f(x)在包含x=0的区间上不可积.

原函数存在与函数可积这个怎么理解?
第一,两者绝对不等价,原函数存在不一定可积,譬如,F(X)的导数为f(x),但是f(x)是无界的,当然不可积,这样的例子是存在的,我手里有很多,建议数字符号不好输,我就不列举了。第2,可积不一定存在原函数,因为当f(x)有界,且存在有限个间断点是可积的,但是一旦这个间断点是第一类间断点...

相似回答
大家正在搜