1.设f(x)=sinx;(f(x+dx)-f(x))/dx=(sin(x+dx)-sinx)/dx=(sinxcosdx+sindxcosx-sinx)/dx因为dx趋近于0cosdx趋近于1(f(x+dx)-f(x))/dx=sindxcosx/dx根据重要极限sinx/x在x趋近于0时等于一,(f(x+dx)-f(x))/dx=cosx,即sinx的导函数为cosx。
同理可得,设f(x)=cos(f(x+dx)-f(x))/dx=(cos(x+dx)-cosx)/dx=(cosxcosdx-sinxsindx-sinx)/dx,因为dx趋近于0cosdx趋近于1(f(x+dx)-f(x))/dx=-sindxsinx/dx,根据重要极限sinx/x在x趋近于0时等于一(f(x+dx)-f(x))/dx=-sinx即cosx的导函数为-sinx。
扩展资料:
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。
(2)若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。
根据微积分基本定理,对于可导的函数,有:
如果函数的导函数在某一区间内恒大于零(或恒小于零),那么函数在这一区间内单调递增(或单调递减),这种区间也称为函数的单调区间。导函数等于零的点称为函数的驻点,在这类点上函数可能会取得极大值或极小值(即极值可疑点)。进一步判断则需要知道导函数在附近的符号。对于满足的一点,如果存在使得在之前区间上都大于等于零,而在之后区间上都小于等于零,那么是一个极大值点,反之则为极小值点。
x变化时函数(蓝色曲线)的切线变化。函数的导数值就是切线的斜率,绿色代表其值为正,红色代表其值为负,黑色代表值为零。
(sinx)'=cosx
(cosx)'=-sinx
(tanx)'=sec²x=1+tan²x
(cotx)'=-csc²x
(secx)' =tanx·secx
(cscx)' =-cotx·cscx.
(tanx)'=(sinx/cosx)'=[cosx·cosx-sinx·(-sinx)]/cos²x=sec²x
扩展资料:
基本三角函数关系的速记方法
六边形的六个角分别代表六种三角函数,存在如下关系:
1)对角相乘乘积为1,即sinθ·cscθ=1; cosθ·secθ=1; tanθ·cotθ=1。
2)六边形任意相邻的三个顶点代表的三角函数,处于中间位置的函数值等于与它相邻两个函数值的乘积,如:sinθ=cosθ·tanθ;tanθ=sinθ·secθ...
3)阴影部分的三角形,处于上方两个顶点的平方之和等于下顶点的平方值。
参考资料:
本回答被网友采纳1.设f(x)=sinx;(f(x+dx)-f(x))/dx=(sin(x+dx)-sinx)/dx=(sinxcosdx+sindxcosx-sinx)/dx
因为dx趋近于0cosdx趋近于1(f(x+dx)-f(x))/dx=sindxcosx/dx根据重要极限sinx/x在x趋近于0时等于一,(f(x+dx)-f(x))/dx=cosx,即sinx的导函数为cosx。
2.同理可得,设f(x)=cos(f(x+dx)-f(x))/dx=(cos(x+dx)-cosx)/dx=(cosxcosdx-sinxsindx-sinx)/dx,因为dx趋近于0cosdx趋近于1(f(x+dx)-f(x))/dx=-sindxsinx/dx,根据重要极限sinx/x在x趋近于0时等于一(f(x+dx)-f(x))/dx=-sinx即cosx的导函数为-sinx。
设f(x)=sinx
(f(x+dx)-f(x))/dx=(sin(x+dx)-sinx)/dx=(sinxcosdx+sindxcosx-sinx)/dx
因为dx趋近于0,cosdx趋近于10
(f(x+dx)-f(x))/dx=sindxcosx/dx
根据重要极限
sinx/x在x趋近于0时等于(f(x+dx)-f(x))/dx=cosx
即sinx的导函数为cosx
同理可得设f(x)=cos
(f(x+dx)-f(x))/dx=(cos(x+dx)-cosx)/dx=(cosxcosdx-sinxsindx-sinx)/dx
因为dx趋近于0,cosdx趋近于1
(f(x+dx)-f(x))/dx=-sindxsinx/dx
根据重要极限
sinx/x在x趋近于0时等于(f(x+dx)-f(x))/dx=-sinx
即cosx的导函数为-sinx
三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。
三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。
本回答被网友采纳1.诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(2π-a)=cos(a)
cos(2π-a)=sin(a)
sin(2π+a)=cos(a)
cos(2π+a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
sin(π+a)=-sin(a)
cos(π+a)=-cos(a)
tgA=tanA=sinAcosA
2.两角和与差的三角函数
sin(a+b)=sin(a)cos(b)+cos(α)sin(b)
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)
tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)
3.和差化积公式
sin(a)+sin(b)=2sin(a+b2)cos(a-b2)
sin(a)−sin(b)=2cos(a+b2)sin(a-b2)
cos(a)+cos(b)=2cos(a+b2)cos(a-b2)
cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)
4.积化和差公式 (上面公式反过来就得到了)
sin(a)sin(b)=-12⋅[cos(a+b)-cos(a-b)]
cos(a)cos(b)=12⋅[cos(a+b)+cos(a-b)]
sin(a)cos(b)=12⋅[sin(a+b)+sin(a-b)]
5.二倍角公式
sin(2a)=2sin(a)cos(a)
cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)
6.半角公式
sin2(a2)=1-cos(a)2
cos2(a2)=1+cos(a)2
tan(a2)=1-cos(a)sin(a)=sina1+cos(a)
7.万能公式
sin(a)=2tan(a2)1+tan2(a2)
cos(a)=1-tan2(a2)1+tan2(a2)
tan(a)=2tan(a2)1-tan2(a2)
8.其它公式(推导出来的 )
a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中 tan(c)=ba
a⋅sin(a)-b⋅cos(a)=a2+b2cos(a-c) 其中 tan(c)=ab
1+sin(a)=(sin(a2)+cos(a2))2
1-sin(a)=(sin(a2)-cos(a2))2
csc(a)=1sin(a)
sec(a)=1cos(a)
例如:
已知角度,对应的正弦值,可写成
sin30º=0.5
已知正弦值,对应的角度,可写成
arc sin0.5=30º
sinx表示一个数字,其中的X是一个角度。arcsinx表示一个角度,其中的X是一个数字,-1<=X<=1。arcsinx表示的角度就是指,正弦值为X的那个角。
积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
arcsinx是sinx的反函数,如果sinx=y,那么arcsiny=x因为sin是周期函数,为了使得函数有唯一值,arcsinx的取值范围是(-90,90]度之间。arcsin0=0,arcsin1=90度。
本回答被网友采纳三角函数的导数公式三角函数的导数怎么求
1.设f(x)=sinx;(f(x+dx)-f(x))\/dx=(sin(x+dx)-sinx)\/dx=(sinxcosdx+sindxcosx-sinx)\/dx因为dx趋近于0cosdx趋近于1(f(x+dx)-f(x))\/dx=sindxcosx\/dx根据重要极限sinx\/x在x趋近于0时等于一,(f(x+dx)-f(x))\/dx=cosx,即sinx的导函数为cosx。同理可得,设f(x)=cos...
三角函数求导公式
正割函数:(secx)'=tanx·secx 余割函数:(cscx)'=-cotx·cscx 反正弦函数:(arcsinx)'=1\/√(1-x^2)反余弦函数:(arccosx)'=-1\/√(1-x^2)反正切函数:(arctanx)'=1\/(1+x^2)反余切函数:(arccotx)'=-1\/(1+x^2)其他函数求导公式 常函数:y=c(c为常数) y'=0 幂函数:y=x...
三角函数求导公式是什么
三角函数的导数公式 (sinx)'=cosx (cosx)'=-sinx (tanx)'=sec²x (cotx)'=-csc²x (secx)' =tanx·secx (cscx)' =-cotx·cscx 反三角函数的求导公式 反正弦函数的求导:(arcsinx)'=1\/√(1-x^2)反余弦函数的求导:(arccosx)'=-1\/√(1-x^2)反正切函数的求导:(...
三角函数求导公式
三角函数求导公式有:1、(sinx)' = cosx 2、(cosx)' = - sinx 3、(tanx)'=1\/(cosx)^2=(secx)^2=1+(tanx)^2 4、-(cotx)'=1\/(sinx)^2=(cscx)^2=1+(cotx)^2 5、(secx)'=tanx·secx 6、(cscx)'=-cotx·cscx 7、(arcsinx)'=1\/(1-x^2)^1\/2 8、(arccosx)'=-1\/(...
常见的导数公式
常见的导数公式如下:1三角函数的导数公式 正弦函数:(sinx)'=cosx 余弦函数:(cosx)'=-sinx 正切函数:(tanx)'=sec?x 余切函数:(cotx)'=-csc?x 正割函数:(secx)'=tanx·secx 余割函数:(cscx)'=-cotx·cscx 2反三角函数的导数公式 反正弦函数:(arcsinx)'=1\/√(1-x^2)反余弦函数:(...
三角函数的导数怎么算的
1、正弦函数sinx的导数:(sinx)' = cosx 2、余弦函数cosx的导数:(cosx)' = - sinx 3、正切函数tanx的导数:(tanx)'=(secx)^2=1\/(cosx)^2=1+(tanx)^2 4、余切函数cotx的导数:(cotx)'=-(cscx)^2=-1\/(sinx)^2=(cotx)^2&...
三角函数的导数怎么求?
常用的三角函数导数:(sinx)'=cosx (cosx)'=-sinx (tanx)'=sec²x=1+tan²x (cotx)'=-csc²x (secx)' =tanx·secx (cscx)' =-cotx·cscx.(tanx)'=(sinx\/cosx)'=[cosx·cosx-sinx·(-sinx)]\/cos²x=sec²x 导函数 如果函数的导函数在某一区间内恒大于...
三角函数的导数
三角函数的导数有:(sinx)=cosx、(cosx)=-sinx、(tanx)=sec2x=1+tan2x。三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。 扩展资料 三角函数的导数公式有 (sinx)'=cosx (cosx)'=-sinx (tanx)'=sec2x=1+tan2x (cotx)'=-csc...
三角函数求导公式
1.正弦函数求导公式: )' = cos。即正弦函数对x求导等于余弦函数。解释:正弦函数描述的是角度与正弦值之间的关系。对其求导,可以理解为角度微小变化时,正弦值的瞬时变化率,这个变化率即为余弦值。因此,正弦函数的导数就是余弦函数。2.余弦函数求导公式: )' = -sin。即余弦函数对x求导等于负的...
三角函数求导公式
三角函数求导公式如下:正弦函数求导: sinx的导数为cosx。余弦函数求导: cosx的导数为-sinx。正切函数求导: tanx的导数为sec²x或1\/cos²x。对数函数求导: 以a为底的对数函数logax求导为1\/。此为对于任何常数a的对数函数的通用导数公式。特别地,自然对数函数ln的导数就是其本身的倒数...