省考行测:数量关系排列组合问题?

如题所述

说起行测中的排列组合问题对于各位考生来说可谓熟悉又陌生,熟悉的是在高中的数学学习中多多少少有所接触,陌生的是这类问题即使学过很多遍也是吃不透抓不准,中公教育专家在此为各位考生带来排列组合问题全面解析。

一、什么是排列组合问题

排列组合问题属于计数问题中的一类问题,其本质是作为计数问题的工具存在。

例如,“小李手上有3个不同的工作要做,请问小李完成这三个工作的顺序共有多少种?”即是一道排列组合题目。

要掌握好排列组合问题首先是要全面透析计数问题的两个计数原理,其次是要熟练应用排列和组合这两个计数工具。

二、两个计数原理

1、加法原理:所谓加法原理是指在完成一件事情的时候,需要将这件事情划分成若干类别,若每个类别中的方法可以独立完成这件事情,且分类没有重复和遗漏的时候,则完成这件事情的总方法数即是每一类别方法数的加和。

例1:从甲地到乙地只能乘坐高铁、飞机或长途汽车,每天高铁有7趟,航班有4趟,长途汽车5趟,则从甲地到乙地每天有多少种不同的方式?

中公解析:按照加法原理,每天从甲地到乙地的不同方式可以按照交通工具不同分成3类:乘坐高铁、乘坐飞机、乘坐长途汽车,这3个类别各有7、4、5种不同方式,则共有7+4+5=16种不同的方式从甲地到乙地。

2、乘法原理:所谓乘法原理是指在完成一件事情的时候,需要将这件事情分成若干个步骤,若每一个步骤内的方法数刚好完成这个步骤,所有步骤实施完恰好完成这件事情,则完成这件事情的总方法数即是每一步骤方法数的乘积。

例2:从甲地去丙地必须经过乙地中转,从甲地去乙地有2列火车,3趟长途大巴,从乙地去丙地有4列火车,2趟长途大巴,则从甲地去丙地共有多少种不同的方式?

中公解析:按照乘法原理,从甲地去丙地必然需要分成两步:第一步从甲地到乙地,第二步从乙地到丙地,从甲地到乙地共有2+3=5种不同方式,从乙地到丙地共有4+2=6种不同方式,则共有5×6=30种不同的方式从甲地去丙地。

简单来讲我们可以将乘法原理理解为分类相加的计数思维,将加法原理理解为分步相乘的计算思维。计数过程中选择分类还是分步的核心区别就是考虑是否能够独立完成这件事情。需要注意的是在考虑计数问题的时候有时只需使用到其中一个计数原理,如例1所示;但有时两个计数原理都会被用到,如例2所示。

三、排列与组合

排列和组合的区别是看题干中的计数问题对元素顺序有无要求,有顺序要求用排列,无顺序要求用组合。简单来说即是改变元素顺序对计数结果有影响用排列,如例1;改变元素顺序对计数结果无影响用组合,如例2。

相信各位考生对于排列组合问题只要能掌握好加法、乘法两个原理和排列、组合两个工具,很多问题自然就会迎刃而解。

温馨提示:内容为网友见解,仅供参考
第1个回答  2020-12-22
说起行测中的排列组合问题对于各位考生来说可谓熟悉又陌生,熟悉的是在高中的数学学习中多多少少有所接触,陌生的是这类问题即使学过很多遍也是吃不透抓不准,中公教育专家在此为各位考生带来排列组合问题全面解析。

一、什么是排列组合问题

排列组合问题属于计数问题中的一类问题,其本质是作为计数问题的工具存在。

例如,“小李手上有3个不同的工作要做,请问小李完成这三个工作的顺序共有多少种?”即是一道排列组合题目。

要掌握好排列组合问题首先是要全面透析计数问题的两个计数原理,其次是要熟练应用排列和组合这两个计数工具。

二、两个计数原理

1、加法原理:所谓加法原理是指在完成一件事情的时候,需要将这件事情划分成若干类别,若每个类别中的方法可以独立完成这件事情,且分类没有重复和遗漏的时候,则完成这件事情的总方法数即是每一类别方法数的加和。

例1:从甲地到乙地只能乘坐高铁、飞机或长途汽车,每天高铁有7趟,航班有4趟,长途汽车5趟,则从甲地到乙地每天有多少种不同的方式?

中公解析:按照加法原理,每天从甲地到乙地的不同方式可以按照交通工具不同分成3类:乘坐高铁、乘坐飞机、乘坐长途汽车,这3个类别各有7、4、5种不同方式,则共有7+4+5=16种不同的方式从甲地到乙地。

2、乘法原理:所谓乘法原理是指在完成一件事情的时候,需要将这件事情分成若干个步骤,若每一个步骤内的方法数刚好完成这个步骤,所有步骤实施完恰好完成这件事情,则完成这件事情的总方法数即是每一步骤方法数的乘积。

例2:从甲地去丙地必须经过乙地中转,从甲地去乙地有2列火车,3趟长途大巴,从乙地去丙地有4列火车,2趟长途大巴,则从甲地去丙地共有多少种不同的方式?

中公解析:按照乘法原理,从甲地去丙地必然需要分成两步:第一步从甲地到乙地,第二步从乙地到丙地,从甲地到乙地共有2+3=5种不同方式,从乙地到丙地共有4+2=6种不同方式,则共有5×6=30种不同的方式从甲地去丙地。

简单来讲我们可以将乘法原理理解为分类相加的计数思维,将加法原理理解为分步相乘的计算思维。计数过程中选择分类还是分步的核心区别就是考虑是否能够独立完成这件事情。需要注意的是在考虑计数问题的时候有时只需使用到其中一个计数原理,如例1所示;但有时两个计数原理都会被用到,如例2所示。

三、排列与组合

排列和组合的区别是看题干中的计数问题对元素顺序有无要求,有顺序要求用排列,无顺序要求用组合。简单来说即是改变元素顺序对计数结果有影响用排列,如例1;改变元素顺序对计数结果无影响用组合,如例2。

相信各位考生对于排列组合问题只要能掌握好加法、乘法两个原理和排列、组合两个工具,很多问题自然就会迎刃而解。
第2个回答  2020-12-22
2015年,国家公务员考试城市数量关系为10题,省级数量关系为15题

省考行测:数量关系排列组合问题?
排列和组合的区别是看题干中的计数问题对元素顺序有无要求,有顺序要求用排列,无顺序要求用组合。简单来说即是改变元素顺序对计数结果有影响用排列,如例1;改变元素顺序对计数结果无影响用组合,如例2。相信各位考生对于排列组合问题只要能掌握好加法、乘法两个原理和排列、组合两个工具,很多问题自然就会...

数量关系:排列组合系列“隔板教你隔出小技巧”?
公务员考试行测数量关系题,排列组合解法之隔板法:运用步骤 题目满足有n相同分给不同的m,且必须分完。将n个元素排成一排,利用板子进行分配,其中需要分给m个对象,则相当于将n个元素分成m份,需要板子m-1块分配,并且将板子插入在n元素行程的空位任何选n-1空位来放m-1板子。即C(n-1,m-1)。...

2024国考行测数量关系13种题型分别是什么?
行测数量关系13种题型包括:计算问题、行程问题、工程问题、排列组合、概率问题、容斥原理问题、平面几何问题,函数图像问题、日期年龄问题、盈亏问题、抽屉原理问题、鸡兔同笼问题、和定极值问题。数量关系题目难度较高,无法在短时间作答,主要考查考生基础知识掌握得是否牢固。熟悉简单的题型是难度提升的关键...

2024国家公务员考试行测数量关系答题指导:元素要相邻,捆绑巧应对?
在行测数量关系中,排列组合是近几年来的必考内容之一。这类题目背景多样,且在题目中还存在各种各样要满足的限制条件,令很多考生望而却步。但实际上这些限制条件往往就是我们解答排列组合的突破口,所以今天我们就给大家带来解决排列组合中要求元素相邻的方法——“捆绑法”。一、方法介绍1.适用范围:题...

河北省考行测考什么
第四部分数量关系:这部分考查数字推理和数学运算。数学运算主要包括计算问题、利润问题、行程问题、工程问题、排列组合问题、概率问题、极值问题、容斥问题、几何问题以及统筹问题等,其中计算问题、行程问题、工程问题、利润问题和几何问题等颇受命题人的青睐。第五部分资料分析:从材料类型来说主要以文字、...

解决排列组合的三大方法-2023江苏公务员考试行测解题技巧
得出2×24×2=96种摆放方法,答案为B。最后,插空法适合解决元素需要不相邻的问题。例3中,3个女生座位互不相邻,先安排男生,产生6个空,扣除两端,选择4个位置。计算得出120×24=2880种,答案是C。熟练运用这些方法,将有助于你在公务员行测考试中高效解决排列组合问题,提升解题准确性和速度。

公务员考试行测技巧:如何判断排列组合中相加还是相乘
公务员考试行测数量关系题之排列组合:区分是用加法还是乘法,只需考虑这件事是分类完成的还是分步完成的即可。即:分析单独的一个方法能否独立完成任务,若能,则为分类,所以相加;若不能,则为分步,所以相乘。

公务员考试行测数量关系题目有哪些?
排列组合问题:涉及排列、组合的计算方法,以及捆绑法、插空法、隔板法等解题技巧。概率问题:核心公式为概率=满足条件的情况数\/总情况数,常见的题型包括基础公式概率、枚举概率、分步分类概率等。还有一些地方性的考试会包含特定的题型,例如在浙江省的公务员考试中,常见的数量关系题型还包括相遇追及问题、...

行测知识点:如何解决数量关系中“排列组合”难题
“学好数理化,走遍天下全不怕”,在行测考试中65分以下的,很大一部分数量关系都是其薄弱环节,而数学运算不仅仅是掌握计算技巧,更要在拿到题目的那一刻迅速想到解题技巧,明白问题本质,选择最优的解题方法,而对于排列组合问题来说,大部分考生都觉得是一个难点内容,要正确的把握考点内容,...

省考行测技巧:排列组合插空法?
排列组合作为行测数量关系中的一个重要题型,几乎在每次行测考试中都有出现,对于这一部分很多考生不知道如何做题,掌握不了做题的方法和技巧,今天中公教育专家就带领着同学们一起来探究一下排列组合常见的做题方法-插空法。方法介绍 插空法:一般适用于有元素出现不相邻时。操作步骤:先将其它的元素排成...

相似回答