设等比数列{a n }的前n项和为S n ,若S 2 =3,S 6 =63,则S 4 =( ) A.33 B.18 C.15 D.12
...若S 2 =3,S 6 =63,则S 4 =( ) A.33 B.18 C.15 D.1
(S 6 -S 4 ),即 (S 4 -3) 2 =3(63- S 4 ) ,化简可得 S 4 2 -3 S 4 -180=0 ,解得S 4 =15,或S 4 =-12,经检验,若S 4 =-12,则q 2 = S 4 S 2 =-4<0,(q为数列的公比),应舍去,故选C ...
设等比数列{an}的前n项和为Sn,若S2=3,S4=15,则S6=?
Sn=a1(1-q^n)\/1-q S2=a1(1-q^2)\/1-q=3 S4=a1(1-q^4)\/1-q=15 a1=1 q=2或a1=-3 q=2 S6=a1(1-q^6)\/1-q=63
已知等比数列{a n }的前n项和为S n ,公比q≠1,若a 1 =1且a n+2 +a...
∵a n+2 +a n+1 -2a n =0,∴a n q 2 +a n q-2a n =0,∴q 2 +q-2=0,解得q=-2,或q=1(舍去)∴S 6 = a 1 (1- q 6 ) 1-q = 1×(1- 2 6 ) 1-(-2) =-21故答案为:-21 ...
设正项等比数列{a n }的前n项和为S n ,且a 3 =4,S 2 =3.(1)求数列{a...
(1)设正项等比数列{a n }的公比为q(q>),∵a 3 =4,S 2 =3,∴ a 1 q 2 =4 a 1 + a 1 q=3 ,解得 q=2 a 1 =1 ,或 q=- 2 3 a 1 =9 (舍),∴ a n = 2 n-1 ...
设等比数列{a n }的前n项和为S n ,若S 5 :S 10 =2:1,则S 15 :S 5 =...
设S 5 =2a,S 10 =a,则由S 5 ,S 10 -S 5 ,S 15 -S 10 成等比数列,可得 S 15 = 3 2 a ,从而S 15 :S 5 =3:4,故答案为3:4.
设等比数列{an}的前n项和为Sn,若S6S3=3,则S9S6=( )?
a4+a5+a6)*q^3=(a1+a2+a3)*q^6=(a1+a2+a3)*4.故S6=3S3, S9-S6=4S3, 故S9=7S3. 故S9\/S6=7\/3.,0,设等比数列{a n}的前n项和为S n,若 S 6 S 3 =3,则 S 9 S 6 =()A. [1\/2]B. [7\/3]C. [8\/3]D. 1 ...
在等比数列{a n }中,前n项和为S n ,若S 3 =7,S 6 =63则公比q等于...
依题意,a 1 +a 2 +a 3 =7,a 1 +a 2 +a 3 +a 4 +a 5 +a 6 =63,所以a 4 +a 5 +a 6 =56,因此q 3 =8,q=2,故选B.
设等比数列{a n }的前n项和为S n ,若S n =2 n +m,则实数m=___.
由题意可得 a 1 =2+m,a 2 =S 2 -S 1 =2,a 3 =S 3 -S 2 =4, ∴4=4(2+m), ∴m=-1, 故答案为:-1.
设数列{a n }的前n项和为S n ,满足 2 S n = a n+1 - 2 n+1 +1,(n...
2 S n = a n+1 - 2 n+1 +1,(n∈N*)∴2a 1 =a 2 -3①,2(a 1 +a 2 )=a 3 -7② ∵a 1 ,a 2 +5,a 3 成等差数列 ∴2(a 2 +5)=a 1 +a 3 ,③ ∴由①②③可得a 1 =1;(2)证明:∵ 2 S n = a n+1 - 2 n+1 +1 ,∴ 2 S n-1 = a...
(1)若等比数列{a n }的前n项和为S n =3?2 n +a,求实数a的值;(2)对...
2 n-1 (2分),因为数列{a n }为等比数列,所以a 1 满足a n 的表达式,即6+a=3?2 0 ,a=-3;(4分)(2)逆命题:数列{a n }是非常数数列,若其前n项和S n =Aa n +B(A,B为常数),则该数列是等比数列判断:是假命题. (7分)直接举反例,当A=0,B≠0时,数列{a ...