把f(x)求出来,就是求那个极限,显然要对X讨论吗,
|x|<1时,lim
x^2n=0,所以f(x)=-1;
|x|>1时,把分子分母除x^2n再求极限,得到f(x)=1;
|x|=1时,f(x)=0。
例如:
[ 1/(n^2-1) - 0 ] = 1/(n^2-1) ,
对任意的δ>0,限制|n|>1,
若满足|1/(n^2-1)|<δ,
解之,只需n>1/δ + 1即可,
对任意的δ>0,存在N=[1/δ + 1]+1,对任意的n≥N,|Xn-a|<δ,
完成证明。
注:[x]表示对x取整,
例如0.3取1。56.6取57。
扩展资料:
一般来说,N随ε的变小而变大,因此常把N写作N(ε),以强调N对ε的变化而变化的依赖性。但这并不意味着N是由ε唯一确定的:(比如若n>N使|xn-a|<ε成立,那么显然n>N+1、n>2N等也使|xn-a|<ε成立)。重要的是N的存在性,而不在于其值的大小。
“当n>N时,均有不等式|xn-a|<ε成立”意味着:所有下标大于N的都落在(a-ε,a+ε)内;而在(a-ε,a+ε)之外,数列{xn} 中的项至多只有N个(有限个)。换句话说,如果存在某 ε0>0,使数列{xn} 中有无穷多个项落在(a-ε0,a+ε0) 之外,则{xn} 一定不以a为极限。
参考资料来源:百度百科-极限
大一高数关于极限的几个题,求过程及答案
把f(x)求出来,就是求那个极限,显然要对X讨论吗,|x|<1时,lim x^2n=0,所以f(x)=-1;|x|>1时,把分子分母除x^2n再求极限,得到f(x)=1;|x|=1时,f(x)=0。例如:[ 1\/(n^2-1) - 0 ] = 1\/(n^2-1) ,对任意的δ>0,限制|n|>1,若满足|1\/(n^2-1)|...
关于高数求极限的三个题目
2.原式=lim(x->+∞){1\/[√(1+1\/x)+1]}=1\/2:3.原式=lim(x->0){2\/[√(1+x)+√(1-x)]}=1。
高数,求极限
1、关于高数求极限问题见上图。2、这个高数第一题求极限,用第二个重要极限可以求出。3、第二题求极限,0代入后,极限可以求出。4、第四题求极限,用第一个重要极限可以求出。或等价无穷小代换。5、第五题求极限,先分解因式和化简后,极限可以求出。
大一高数求极限。求大神解答
1. 代入法, 分母极限不为零时使用.先考察分母的极限,分母极限是不为零的常数时即用此法.【例1】lim[x-->√3](x^2-3)\/(x^4+x^2+1)lim[x-->√3](x^2-3)\/(x^4+x^2+1)=(3-3)\/(9+3+1)=0 【例2】lim[x-->0](lg(1+x)+e^x)\/arccosx lim[x-->0](lg(1+x...
大一高数几个求极限的简单的解答题,急求答案,能给个大概过程就行,题在...
1.直接带入 2.抓大头思想,极限为零 3.重要极限,即e^10 4.等价替换,分子等价于-2x^2,分母等价于x^2,即-2
求几道高数极限题目的解答过程~~越详细越好
1、lim(x趋于0+)[cosx^(1\/2)+x+x^2]^(1\/x)=lim(x趋于0+)exp{ln[cosx^(1\/2)+x+x^2]\/x} 对lim(x趋于0+)ln[cosx^(1\/2)+x+x^2]\/x应用罗比达法则,分子分母同时求导,lim(x趋于0+)ln[cosx^(1\/2)+x+x^2]\/x=lim(x趋于0+)(2x+1-1\/2[(sinx^1\/2)\/x^(1\/...
几道大一高数求极限题目 求解题详细过程和答案
1。lim(n→∞)cos (nπ\/2)\/n=1。lim(.n→∞)Xn=0,解N时,N必须满足1\/N<δ.即N=1\/δ.δ=0.001,n=1000.2.a为常数,所以当n→∞,lim(x→∞)a²\/n²=0,所以lim(n→∞)根号下(1+a²\/n²)=lim(n→∞)1=1 或:欲使|根号下(1+a²\/n&sup...
求极限(大专高数题 求极限)
这个极限是属于“未定式”的题目,可以用洛必达法则来求。
大一高数求极限题目……求详解……
分子有理化 分母有理化 之后消掉“0因子” 就可以代入X的值了~
高数极限10道题求解和过程
题目 lim(x->1) [ 1\/(1-x) -1\/(1-x^3) ]=lim(x->1) (1+x+x^2-1)\/[(1-x)(1+x+x^2)]=lim(x->1) (x^2+x)\/[(1-x)(1+x+x^2)]->∞ (7)lim(x->0) sinx. cos(1\/x)|cos(1\/x)|<=1 lim(x->0) sinx =0 => lim(x->0) sinx. cos(1\/x) ...