一道极限题lim(x→0)√(tansinx)\/(sintanx)
(sintanx)'=costanx*1\/cos^2x=costanx\/cos^2x 所以 (tansinx)'\/(sintanx)'=cosx\/cos^2(sinx) \/ costanx\/cos^2x = cos^3x \/ costanx * cos^2(sinx)所以 lim(x->0)√(tansinx)\/(sintanx)=lim(x->0)√cos^3x \/ costanx * cos^2(sinx)=√1\/cos(0)*cos^2(0)=√1\/...
一道极限题lim(x→0)√(tansinx)\/(sintanx)
(sintanx)'=costanx*1\/cos^2x=costanx\/cos^2x 所以 (tansinx)'\/(sintanx)'=cosx\/cos^2(sinx)\/ costanx\/cos^2x = cos^3x \/ costanx cos^2(sinx)所以 lim(x->0)√(tansinx)\/(sintanx)=lim(x->0)√cos^3x \/ costanx cos^2(sinx)=√1\/cos(0)*cos^2(0)=√1\/1 =1 ...
tansinx\/sintanx 在x趋于0
limtan(sinx)\/sin(tanx)(x趋向0)=limsec^2(sinx)cosx\/cos (x趋向0)(tanx)sec^2x =1*1\/1*1 =1
tansinx\/sintanx 在x趋于0
limtan(sinx)\/sin(tanx)(x趋向0)=limsec^2(sinx)cosx\/cos (x趋向0)(tanx)sec^2x =1*1\/1*1 =1
lim(x— 0)根号tanx在0到sint的无穷积分\/根号sinx在0到tant的无穷积分...
先用罗比达法则对分子分母分别求导,得:cost的立方*根号下tan(sint)\/根号下sin(tant),当x-0时,cost=1,再对上式用等价无穷小替换得:根号下sint\/根号下tant,等于1
lim(x— 0)根号tanx在0到sint的无穷积分\/根号sinx在0到tant的无穷积分...
先用罗比达法则对分子分母分别求导,得:cost的立方*根号下tan(sint)\/根号下sin(tant),当x-0时,cost=1,再对上式用等价无穷小替换得:根号下sint\/根号下tant,等于1
x趋于0时tan(sinx)\/sin(tanx)的极限
利用等价无穷小替换:tanx~sinx~x , (x→0)将括号内的sinx、tanx看成整体即可,具体解题过程如下:
tanx\/ sinx\/ x的极限为什么等于0?
=lim(x→0) [sin(sinx)\/cos(cosx)-tan(tanx)cos(tanx)]\/x^3 =lim(x→0) [x\/cos(cosx)-xcos(tanx)]\/x^3 =lim(x→0) [1\/cos(cosx)-cos(tanx)]\/x^2 =lim(x→0) [1-cos(cosx)*cos(tanx)]\/(x^2*cos(cosx))=lim(x→0) [1-cos(cosx)*cos(tanx)]\/(x^2...
如图,求极限(定积分题目)
lim(x->0) ∫ (0->sinx) √tant dt\/∫ (0->tanx) √sint dt (0\/0)=lim(x->0) √tan(sinx)\/√sin(tanx)=1
分子是tan(sinx)➖sin(tanx)分母是x^3 limx趋向0。这题的解题思路是...
看到x趋向于0,再看到三角函数和x^3,考虑用泰勒