老师好 A,B都是n阶非零矩阵,且AB=0,则|A|和|B|都等于0.为什么呀?

1.A,B为n阶非零矩阵,AB=0,则A,B秩都小于n 这是怎么来的呀?
2.设A,B为n阶方阵,AB=0,则|A|=0或|B|=0.
详细的区别是什么呀?

标题的非0矩阵,若|A|和|B|不都等于0,假设|A|≠0,则A满秩,则AX=0仅零解,所以B得每一列都为0,所以B=0,这与A,B为n阶非零矩阵相悖,所以|A|和|B|都等于0
1中,有标题问答,可知|A|=|B|=0,即都不是满秩,<n
2中,去掉了“非零”这个条件,若A=0,B就随意了,只要是n阶就成立,即此时可以有|B|≠0,
同理,若B=0,也是这个意思。 所以此时,只要|A|=0或|B|=0
温馨提示:内容为网友见解,仅供参考
无其他回答

老师好 A,B都是n阶非零矩阵,且AB=0,则|A|和|B|都等于0.为什么呀?
标题的非0矩阵,若|A|和|B|不都等于0,假设|A|≠0,则A满秩,则AX=0仅零解,所以B得每一列都为0,所以B=0,这与A,B为n阶非零矩阵相悖,所以|A|和|B|都等于0 1中,有标题问答,可知|A|=|B|=0,即都不是满秩,<n 2中,去掉了“非零”这个条件,若A=0,B就随意了,只要是...

线性代数中,设AB均为n阶非零矩阵,且AB=0,则A和B的秩 都小于零 答案上说...
AB=0,求证r(A)+r(B)≤n,Sylvester公式 r﹙A﹚+r﹙B﹚-n ≤ r﹙AB﹚ 右边为零,即得。[Sylvester公式的证明,教材上都有。用分块矩阵的初等变换,打起来麻烦,自己看吧 ! ]

设A为n阶非零矩阵,且|A|=0,证明存在n阶非零矩阵B使AB=0
因为 |A|=0 所以 r(A)<n 所以 A 的列向量组线性相关 所以存在不全为0 的数满足 k1a1+...+knan = 0 令 B= (k1,...,kn)^T 则 B 非零, 且 AB=0.

A,B都是n阶非零矩阵,AB=0,则A,B的秩都小于n,即B的每一列都是方程组Ax...
r(A)>=1是因为它是非零矩阵,只要是非零矩阵,秩当然至少是1 至于r(B)<n是因为AB=0而,A又不是0矩阵,说明 xB=0有非零解,如果r(B)=n则这个方程一定只有0解,所以只有r(B)<n

设AB都是n阶非零矩阵,AB=O,证明|A|=0,|B|=0
用反证法如图证明,行列式非零时矩阵可逆。经济数学团队帮你解答,请及时采纳。谢谢!

设A,B都是n阶非零矩阵,且AB=0,已知A,怎么求B?(假设存在非零解)_百度...
A, B都是n阶非零矩阵,所以r(A)>0,r(B)>0 再用不等式r(A)+r(B)-n<=r(AB)=0 所以A,B的秩的范围就是:r(A)>0,r(B)>0,r(A)+r(B)<=n 只能求出这个范围,不能求出确定的解。

设A, B都是n阶非零矩阵,且AB=0, 则A,B的秩为,不用求具体值
1、A,B都是n阶非零矩阵,所以r(A)>0,r(B)>0,再用不等式r(A)+r(B)-n0,r(B)>0,r(A)+r(B)<=n;2、在数学中,矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出;3、无限矩阵发生在行星理论和原子...

A和B是n阶非零矩阵,且AB=0,为什么可以得
如果AB=0且A与B都是非零矩阵,则两个行列式都为0。反证法,若|A|≠0,则A可逆,在AB=0两边左乘A的逆矩阵可得B=0,矛盾,所以|A|=0。同理可证|B|=0。

矩阵问题 设A,B均为n阶非零矩阵,且AB=0,则矩阵A和B的秩都小于n,为什么...
假设矩阵A的秩不小于n,则r(A)=n;所以A是满秩矩阵,存在逆.AB=0 两边同时乘以A的逆,则B=0,矛盾,因此假设不成立.证毕!

设A,B均为n阶非零方阵,且AB=O,则必有( )?
我们知到 方程组AX=0 若有非零解则A必然不满秩,即|A|=0,B矩阵可以转置后得出相同结论

相似回答