已知两个等差数列{an}{bn},其前n项的和分别为Sn和Tn,且Sn/Tn=7n+2/n+3,求

求(1)a2+a20/b7+b15
(2)a1+a12+a14/b3+b7+b17
(3)a2+a5+a17+a22/b8+b10+b12+b16

(1)a2+a20/b7+b15
=2a11/2b11
=S11/T11
=79/14

(2)a1+a12+a14/b3+b7+b17
=(a1+2a13)/(2b5+b17)
=(2a7+a13)/(b5+2b11)
=(a7+2a10)/(2b8+b11)
=(a8+a9+a10)/(b8+b9+b10)
=3a9/3b9
=S9/T9
=65/12

(3)a2+a5+a17+a22/b8+b10+b12+b16
=(2a12+2a11)(2b12+2b11)
=S22/T22
=156/25追问

为什么
2a11=S11 2b11=T11
3a9=S9 3b9=T9
2a12+2a11=S22 2b12+2b11=T22

追答

S11=11a11
T11=11b11
所以,a11/b11=S11/T11

不是 2a11=S11 2b11=T1

第二个类似,不是3a9=S9 3b9=T9

S22=a1+a2+……a22
而,a1+a22=a2+a21=……=a11+a12
所以,S22=11(a11+a12)
同理,T22=11(b11+b12)

不是2a12+2a11=S22 2b12+2b11=T22

因为是比例,前面的常数项相等,所以就消掉了

追问

S11=11a11
T11=11b11
这是怎么算出来的啊?能说详细点吗?

追答

第一题和第二题都做错了,正确如下

(1)a2+a20/b7+b15
=2a11/2b11
=S21/T21
=149/24

(2)a1+a12+a14/b3+b7+b17
=(a1+2a13)/(2b5+b17)
=(2a7+a13)/(b5+2b11)
=(a7+2a10)/(2b8+b11)
=(a8+a9+a10)/(b8+b9+b10)
=3a9/3b9
=S17/T17
=121/20

解释为什么 a11/b11=S21/T21
S21=a1+a2+……a21
而,a1+a21=a2+a20=……=a10+a12=a11+a11=2a11
所以,S21=21a11
同理,T11=21b11

温馨提示:内容为网友见解,仅供参考
无其他回答

已知两个等差数列{an}{bn},其前n项的和分别为Sn和Tn,且Sn\/Tn=7n+2\/n...
(1)a2+a20\/b7+b15 =2a11\/2b11 =S11\/T11 =79\/14 (2)a1+a12+a14\/b3+b7+b17 =(a1+2a13)\/(2b5+b17)=(2a7+a13)\/(b5+2b11)=(a7+2a10)\/(2b8+b11)=(a8+a9+a10)\/(b8+b9+b10)=3a9\/3b9 =S9\/T9 =65\/12 (3)a2+a5+a17+a22\/b8+b10+b12+b16 =(2a12+2a11)(2b12+2...

已知两个等差数列{an}{bn},其前n项的和分别为Sn和Tn,并且Sn\/Tn=7n+2\/...
sn=(n\/2)(a1+an),Tn=(n\/2)(b1+bn),设an公差为d1,bn公差为d2 Sn\/Tn=(a1+an)\/(b1+bn)=(nd1+a1-d1)\/(nd2+b1-d2)=(7n+2)\/(n+3)令d2=m,m≠0,则d1=7m,a1-d1=2m,b1-d2=3m 得a1=9m,b1=4m a7=a1+6d1=9m+42m=51m b8=b1+7d2=4m+7m=...

...等差数列{an}和{bn},其前n项和分别为Sn,Tn,且 Sn Tn = 7n+2\/ n+3
Sn=n(a1+an)\/2,a1+an=2a((1+n)\/2)同理,所以a5\/b5=(a1+a9)\/(b1+b9)=S9\/T9=65\/12

...数列,其前n项和分别为Sn和Tn,且Sn\/Tn=(7n+2)\/(n+3
因为 Sn\/Tn = (7n+2)\/(n+3) ,所以当 n = 21 时有 S21\/T21 = (7*21+2) \/ (21+3) = 149\/24 ,根据等差数列的性质,得 S21 = 21a11 ,T21 = 21b11 ,所以可得 a11\/b11 = 149\/24 ,而 a2+a20 = 2a11,b7+b15 = 2b11 ,所以 (a2+a20)\/(b7+b15) = (2a11)\/(2b1...

...其前n项和分别为Sn和Tn,且Sn\/Tn=(7n+2)\/(n+3),求a5\/b7
{an},{bn}是两个等差数列,所以其前n项和Sn和Tn分别为关于n的二次式,且不含常数项。由Sn\/Tn=(7n+2)\/(n+3)可设:Sn=n(7n+2),Tn=n(n+3)。由此可求出an=14n-5,bn=2n+2。所以a5\/b7=65\/16。

两等差数列{an}和{bn}的前n项和分别为Sn和Tn,若Sn\/Tn=7n+3\/n+3,求a...
求得an=14n-4 bn=2n+2 所以a8\/b7=27\/4

两个等差数列{An}{Bn}的前n项和是Sn,Tn,且Sn\/Tn=7n+33\/n+3,则使得An...
Sn\/Tn=7n+3\/n+3 S15\/T15=15a8\/15b8=a8\/b8=7*15+3\/15+3=6 除法的法则:除法的运算性质 1、被除数扩大(缩小)n倍,除数不变,商也相应的扩大(缩小)n倍。2、除数扩大(缩小)n倍,被除数不变,商相应的缩小(扩大)n倍。3、被除数连续除以两个除数,等于除以这两个除数之积。除法...

...其前n项和分别为Sn和Tn,且Sn\/Tn=(7n+2)\/(n+3),求a5\/a6
∵{an},{bn}是两个等差数列 Sn\/Tn=(7n+2)\/(n+3)∴[n\/2(a1+an)]\/[n\/2(b1+bn)]=(7n+2)\/(n+3)∴(a1+an)\/(b1+bn)=(7n+2)\/(n+3)∴a5\/b5=(2a5)\/(2b5)=(a1+a9)\/(b1+b9)=(7×9+2)\/(9+3)=65\/12 求a5\/a6缺条件:

设等差数列{an},{bn}的前n项和分别是Sn,Tn,且Sn\/Tn=7n+2\/n+3求a5\/b5
因为S9=9×a5 T9=9×b5 所以a5\/b5=S9\/T9 因为Sn\/Tn=7n+2\/n+3 所以S9\/T9=65\/12

两个等差数列{an}和{bn}的前n项和分别为Sn和Tn,若Sn\/Tn=(7n+2)\/(n...
解:等差数列的前n项和为n的一次多项式,所以:可设:Sn = k(7n+2),Tn = k(n+4),其中k为Sn\/Tn的系数比 a5+a6 = S6-S4=14k b5+b6 =T6-T4 = 2k 所以:(a5+a6)\/(b5+b6) =7

相似回答