如图, 和 所在平面互相垂直,且 , ,E、F分别为AC、DC的中点.(1)求证: ;(2)求二面角 的正弦值.
(1)详见解析;(2) . |
试题分析:(1)(方法一)过E作EO⊥BC,垂足为O,连OF,由△ABC≌△DBC可证出△EOC≌△FOC,所以∠EOC=∠FOC= ,即FO⊥BC,又EO⊥BC,因此BC⊥面EFO,即可证明EF⊥BC.(方法二)由题意,以B为坐标原点,在平面DBC内过B左垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图所示的空间直角坐标系. 易得 ,所以 ,因此 ,从而得 ;(2) (方法一)在图1中,过O作OG⊥BF,垂足为G,连EG,由平面ABC⊥平面BDC,从而EO⊥平面BDC,从而EO⊥面BDC,又OG⊥BF,由三垂线定理知EG垂直BF,因此∠EGO为二面角E-BF-C的平面角;在△EOC中,EO= EC= BC·cos30°= ,由△BGO∽△BFC知, ,因此tan∠EGO= ,从而sin∠EGO= ,即可求出二面角E-BF-C的正弦值. (方法二)在图2中,平面BFC的一个法向量为 ,设平面BEF的法向量 ,又,由 得其中一个 ,设二面角E-BF-C的大小为 ,且由题意知 为锐角,则 ,因此sin∠EGO= ,即可求出二面角E-BF-C的正弦值. (1)证明: (方法一)过E作EO⊥BC,垂足为O,连OF, 由△ABC≌△DBC可证出△EOC≌△FOC,所以∠EOC=∠FOC= ,即FO⊥BC, 又EO⊥BC,因此BC⊥面EFO, 又EF 面EFO,所以EF⊥BC. (方法二)由题意,以B为坐标原点,在平面DBC内过B左垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图所示的空间直角坐标系. 易得B(0,0,0),A(0,-1, ),D( ,-1,0),C(0,2,0),因而 ,所以 ,因此 ,从而 ,所以 . (2)(方法一)在图1中,过O作OG⊥BF,垂足为G,连EG,由平面ABC⊥平面BDC,从而EO⊥平面BDC,从而EO⊥面BDC,又OG⊥BF,由三垂线定理知EG垂直BF. 因此∠EGO为二面角E-BF-C的平面角; 在△EOC中,EO= EC= BC·cos30°= ,由△BGO∽△BFC知, ,因此tan∠EGO= ,从而sin∠EGO= ,即二面角E-BF-C的正
温馨提示:内容为网友见解,仅供参考
无其他回答 ...E、F分别为AC、DC的中点.(1)求证: ;(2)求二面角 的正 ...互相垂直,且 . (1)求证:平面 平面 ;(2)求二面角 的 ...形ACB所在的平面互相垂直,且AC=BC=2,∠ACB=90°,F,G分别是线段AE,B... ...边长为2的等边三角形,且它们所在平面互相垂直, , .(1) 求证: ||... 已知矩形 与正三角形 所在的平面互相垂直, 、 分别为棱 、 的中点... 如图:正△ABC与Rt△BCD所在平面互相垂直,且∠BCD=90°,∠CBD=30°... (2014?辽宁)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC... 如图,两矩形ABCD,ABEF所在平面互相垂直,DE与平面ABCD及平面ABEF所成角... (2014?辽宁)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC... 如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1.(1...
相似回答
大家正在搜
|