数学历史上的三次危机是什么?

数学历史上的三次危机是什么?

第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为l的正方形的对角线长度既不是整数,也不是整数的比所能表示。希伯索斯的发现被认为是“荒谬”和违反常识的事。它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。这场危机通过在几何学中引进不可通约量概念而得到解决。两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。正方形的一边与对角线,就不存在能同时量尽它们的第三线段,因此它们是不可通约的。很显然,只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了。不可通约量的研究开始于公元前4世纪的欧多克斯,其成果被欧几里得所吸收,部分被收人他的《几何原本》中。第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。微积分的形成给数学界带来革命性变化,在各个科学领域得到广泛应用,但微积分在理论上存在矛盾的地方。无穷小量是微积分的基础概念之一。微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾。焦点是:无穷小量是零还是非零?如果是零,怎么能用它做除数?如果不是零,又怎么能把包含着无穷小量的那些项去掉呢?直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,而且把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。
第二次数学危机的解决使微积分更完善。
第三次数学危机,发生在十九世纪末。当时英国数学家罗素把集合分成两种。
第一种集合:集合本身不是它的元素,即A A;第二种集合:集合本身是它的一个元素A∈A,例如一切集合所组成的集合。那么对于任何一个集合B,不是第一种集合就是第二种集合。
假设第一种集合的全体构成一个集合M,那么M属于第一种集合还是属于第二种集合。
如果M属于第一种集合,那么M应该是M的一个元素,即M∈M,但是满足M∈M关系的集合应属于第二种集合,出现矛盾。
如果M属于第二种集合,那么M应该是满足M∈M的关系,这样M又是属于第一种集合矛盾。
以上推理过程所形成的俘论叫罗素悖论。由于严格的极限理论的建立,数学上的第一次第二次危机已经解决,但极限理论是以实数理论为基础的,而实数理论又是以集合论为基础的,现在集合论又出现了罗素悖论,因而形成了数学史上更大的危机。从此,数学家们就开始为这场危机寻找解决的办法,其中之一是把集合论建立在一组公理之上,以回避悖论。首先进行这个工作的是德国数学家策梅罗,他提出七条公理,建立了一种不会产生悖论的集合论,又经过德国的另一位数学家弗芝克尔的改进,形成了一个无矛盾的集合论公理系统。即所谓ZF公理系统。这场数学危机到此缓和下来。数学危机给数学发展带来了新的动力。在这场危机中集合论得到较快的发展,数学基础的进步更快,数理逻辑也更加成熟。然而,矛盾和人们意想不到的事仍然不断出现,而且今后仍然会这样。
温馨提示:内容为网友见解,仅供参考
无其他回答

数学史上的三大危机是什么
数学史上三大危机是:1、希伯斯发现了一个腰为1的等腰直角三角形的斜边永远无法用较简整数比来表示,从而发现了一个无理数,推翻了毕达哥拉斯的著名理论。2、微积分的合理遭到严重质疑,险些要把整个微积分理论推翻。3、罗素悖论不像较大序数悖论或较大基数悖论那样涉及高深知识,它很简单,却可以轻松...

什么是数学发展史上的三次危机
数学发展史上的三次危机无理数的发现:1、第一次数学危机:公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的"危机",从而产生了第一次数学危机。2、第二次数学危机:18世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大...

三次数学危机分别是什么
数学历史上的三次危机,分别是达哥拉斯悖论、贝克莱悖论和罗素悖论。1. 第一次数学危机:毕达哥拉斯悖论 毕达哥拉斯学派在数学上的重要贡献之一是证明了毕达哥拉斯定理,即勾股定理。该定理表述为直角三角形的三边满足 a² = b² + c²,其中a和b是直角边,c是斜边。然而,毕达哥...

数学史上的三次危机及如何化解
三、罗素悖论:S由一切不是自身元素的集合所组成,那S包含S吗?用通俗一点的话来说,小明有一天说:“我正在撒谎!”问小明到底撒谎还是说实话。罗素悖论的可怕在于,它不像最大序数悖论或最大基数悖论那样涉及集合高深知识,它很简单,却可以轻松摧毁集合理论!解决 1、排除悖论,危机产生后,数学家纷...

数学危机有几次
数学史上的三次数学危机分别发生在公元前5世纪、17世纪、19世纪末,都是发生在西方文化大发展时期。因此,数学危机的发生,都有其一定的文化背景。这三次数学危机分别是:第一次:古希腊时代,由于不可公度的线段——无理数的发现与一些直觉的经验想抵触而引发的。第二次:是在牛顿和莱布尼茨建立了微...

数学三大危机具体指什么
3、第三大危机是关于集合论的悖论。在20世纪初,数学家们开始研究集合论,这是一种研究集合及其性质和关系的数学分支。然而,在这个过程中出现了一些集合论的悖论,其中最著名的是罗素悖论。罗素悖论指出,所有不包含自身的集合所组成的集合,是否也包含自身?这个问题引发了第三次数学危机。这个危机推动了...

简述数学史上的三次数学危机及其对数学发展的影响
1. 数学悖论与三次数学危机 数学发展史上,曾发生过三次数学危机,每一次危机都由一个或几个典型的数学悖论引起。这些悖论的出现,不仅给数学带来了麻烦和失望,更重要的是,它们推动了数学的繁荣和发展。2. 毕达哥拉斯悖论与第一次数学危机 公元前六世纪,毕达哥拉斯学派提出了“万物皆数”的哲学...

数学史的三次危机
这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的“危机”,从而产生了第一次数学危机。到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本...

数学的历史上,都经历过什么样的危机?
数学史上的三次数学危机发生在公元前5世纪、公元前17世纪和公元前19世纪末,都发生在西方文化大发展时期。因此,数学危机的发生有其自身的文化背景。第一次数学危机是数学史上的一个重要事件,发生在公元前400年左右的古希腊时期,从发现根式二到公元前370年左右,其标志是无理数定义的出现。第二次数学...

数学的三次革命是什么?
[编辑本段]数学发展史上的三次危机 1.毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。...

相似回答