正数x,y,z;x ^2 + xy + y ^2 / 3 = 25 , y ^2/ 3 + z^2 = 9 , z^2 + xz + x ^2= 16 ,试求xy+2yz+3xz的值

如题所述

自己看图片上的解答吧~

温馨提示:内容为网友见解,仅供参考
无其他回答

正数x,y,z;x ^2 + xy + y ^2 \/ 3 = 25 , y ^2\/ 3 + z^2 = 9 , z^2...
自己看图片上的解答吧~

若正数x,y,z满足x^2+xy+1\/3y^2=25,1\/3y^2+z^2=9,z^2+2x+x^2=16,求xy...
1\/2 *3*4 = 1\/2 x*y\/√3 sin150° + 1\/2 *z*y\/√3 + 1\/2 xz sin120° 6 = xy \/ (4√3) + yz \/ (2√3) + √3 xz \/ 4 同乘以 4√3 得 xy + 2yz + 3xz = 24√3 【答案】__24 √ 3

已知x、y、z都是正数,x^2+xy+y^2=1,y^2+yz+z^2=3,z^2+zx+x^2=4,求x...
三元方程组啊,可以解的,告你个稍微简单的方法,式子分别乘(x-y),(y-z),(z-x),变成 x^3-y^3= x-y,y^3-z^3=3(y-z),z^3-x^3=4(z-x).三式相加:0=-3x+2y+z 然后把z=3x-2y代入前两个式子,求出三组结果,x=2√7\/7,y=√7\/7,z=4√7\/7,另外两组因为不满...

设x、y、z为正数,x^2+y^2+z^2=1,求S=xy\/z+yz\/x+zx\/y的最小值.
=(x^2+y^2+z^2)+2 =3 因此 ssqrt≥(3)取等号的条件是(xy\/z) = (yz\/x) = (xz\/y)x = y = z = sqrt(3)\/3

已知x+y+z=3,x^2+y^2+z^2=29,x^3+y^3+z^3=45,求xyz的值.
x+y+z)(x^2+y^2+z^2-xy-yz-xz)分解过程参见:(x+y+z)^2-(x^2+y^2+z^2)=2xy+2xz+2yz 所以xy+xz+yz=[3*3-29]\/2=-10 所以 3xyz=x^3+y^3+z^3-(x+y+z)(x^2+y^2+z^2-xy-yz-xz)=45-3*[29-(-10)]=-72 xyz=-24 ...

若x,y,z都是正实数,且x^2+y^2+z^2=1,求证yz\/x+xz\/y+xy\/z>=根号3_百 ...
x^+m^x^+z^=1 x^=(1-z^)\/(m^+1)设k=yz\/x+xz\/y+xy\/z,k为正实数,则 k=mz+z\/m+mx^\/z =z(m+1\/m)+m(1-z^)\/(z(m^+1))kz=z^(m+1\/m)+m\/(m^+1)-mz^\/(m^+1)z^(m+1\/m-m\/(m^+1))-kz+m\/(m^+1)=0 因为此方程式z有解则有 k^-4[m+1\/m-m\/(...

实数x,y,z满足x^2+y^2+z^2=1,则xy+yz的最大值为
由题意,三个字母的绝对值都必须不大于1.所以,我们可以(常常如此)设:x=cosα, y=sinαcosβ, z=sinαsinβ,(这样恰好满足题意)。此处α,β都是实数。则xy+yz=y(x+z)=sinαcosβ*(cosα+sinαsinβ)∵cosα+sinα sinβ=√ (1+sinβ) * sin(α+φ) ,φ为辅助角...

实数x,y,z满足x^2+y^2+z^2=1,则sqr(2)xy+yz的最大值为
3)\/6*y^2+sqrt(3)\/2*z^2=sqrt(3)\/2(x^2+y^2+z^2)=sqrt(3)\/2 故sqr(2)xy+yz的最大值为为sqrt(3)\/2 当且仅当sqrt(3)\/2*x^2=sqrt(3)\/3*y^2,sqrt(3)\/6*y^2=sqrt(3)\/2*z^2 x^2+y^2+z^2=1=>x=sqrt(3)\/3 y=sqrt(2)\/2 z=sqrt(6)\/6 ...

xyz都是正实数,求xy+yz\/x^2+y^2+z^2的最大值.
均值不等式,x,y,z都是正实数,有 x^2+(y^2)\/2≥xy√2.①(等号成立x^2=(y^2)\/2 (y^2)\/2+z^2≥yz√2.②(等号成立(y^2)\/2=z^2 ①+②得 x^2+y^2\/2+y^2\/2+z^2≥xy√2+yz√2=√2(xy+yz)所以 (xy+yz)\/(x^2+y^2+z^2)≤1\/√2=(√2)\/2 故当且仅当x...

已知:x,y,z满足x+y+z=1,x^2+y^2+z^2=2,x^3+y^3+z^3=3,求x^
则a[n+3]=(x+y+z)a[n+2]-xya[n+1]-yza[n+1]-zxa[n+1]+xyza[n]a[4]=a[3]-(xy+yz+zx)a[2]+xyza[1]=>a[4]=3-2(xy+yz+zx)+xyz 由于2(xy+yz+zx)=(x+y+z)^2-(x^2+y^2+z^2)=-1 xyz=[(x+y+z)^3-3(x+y+z)(x^2+y^2+z^2)+2(x^3+y^3...

相似回答