求不定积分∫[1\/(1+sinx+cosx)]dx
用万能公式代换 令u=tan(x\/2)原式= ∫ 1\/[ 1+ 2u\/(1+u²) + (1-u²)\/(1+u²)] * 2\/(1+u²) du = ∫ 1\/(1+u) du = ln | 1+u | +C = ln | 1+ tan(x\/2) | +C
1\\(1+sinx+cosx)的不定积分?
∫(1\/(1+sinx+cosx))dx =∫(1\/(2(sin(x\/2)cos(x\/2))+2(cos(x\/2))^2))dx =∫(1\/(2cos(x\/2)(sin(x\/2)+cos(x\/2)))dx =∫(1\/(1+tan(x\/2))dtan(x\/2)=ln|1+tan(x\/2)|+C 希望能帮到你!
一道求不定积分的高数题 ∫(1+sinx)\/(1+sinx+cosx)dx怎么解答?
(1+sinx)\/(1+sinx+cosx)=(sin(x\/2)+cos(x\/2))²\/(2cos(x\/2)(sin(x\/2)+cos(x\/2))=tan(x\/2)\/2+1\/2 ∫[tan(x\/2)\/2+1\/2]dx=x\/2+∫tan(x\/2)d(x\/2)=-ln|cos(x\/2)|+x\/2+C
∫1\/(1+sinx-cosx)dx
故∫1\/(1+sinx+cosx)dx =∫[(1+t^2)\/(2+2t)]*[ (2dt)\/(1+t^2)]=∫[1\/(1+t)]dt=ln|1+t|+C。又t=tan(x\/2),所以:∫1\/(1+sinx+cosx)dx =ln|1+tan(x\/2)|+C。(以上C为常数)
∫dx\/(1+sinx+cosx) 不定积分
设t=tan(x\/2)∫dx\/(1+sinx+cosx)=∫dt\/(1+t)=ln(1+t)+C =ln(1+tanx\/2)+C
1\/(1+sinxcosx)积分怎么求?
解答过程如下:
一个不定积分……急!有理函数积分这一节的内容 ∫dx\/(1+sinx+cosx)
设t=tan(x\/2),则x=2arctant,sinx=2t\/(1+t²),cosx=(1-t²)\/(1+t²),dx=2dt\/(1+t²)故 ∫dx\/(1+sinx+cosx)=∫[2dt\/(1+t²)]\/[1+2t\/(1+t²)+(1-t²)\/(1+t²)]=∫[2dt\/(1+t²)]\/[2(1+t)\/(1+t²)...
sinx\/(1+sinx+cosx)的不定积分,thanks
简单计算一下即可,答案如图所示
1\/(sinx+cosx)的不定积分怎么求??
具体回答如下:∫1\/(sinx+cosx) dx =∫1\/[√2(sinxcosπ\/4+sinπ\/4·cosx)]dx =∫1\/[√2sin(x+π\/4)] dx =√2\/2 ∫csc(x+π\/4) d(x+π\/4)=√2\/2 ln|csc(x+π\/4)-cot(x+π\/4)|+C 不定积分的意义:一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分...
如何求 1\/(sinx+cosx) 的不定积分?
具体回答如下:∫1\/(sinx+cosx) dx =∫1\/[√2(sinxcosπ\/4+sinπ\/4·cosx)]dx =∫1\/[√2sin(x+π\/4)] dx =√2\/2 ∫csc(x+π\/4) d(x+π\/4)=√2\/2 ln|csc(x+π\/4)-cot(x+π\/4)|+C 不定积分的意义:设G(x)是f(x)的另一个原函数,即∀x∈I,G'(x)=f...