八年级下册数学 怎样容易的把一个多项式因式分解

解释的详细点,,谢谢

①如果多项式的各项有公因式,那么先提公因式;

②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;

④分解因式,必须进行到每一个多项式因式都不能再分解为止.

(6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式

另外,在多次多项式内,还可以用双十字相乘法,轮换对称法解决。
主要注意事项:初学因式分解的“四个注意”
因式分解初见于九年义务教育三年制初中教材《代数》第二册,在初二上学期讲授,但它的内容却渗透于整个中学数学教材之中。学习它,既可以复习初一的整式四则运算,又为本册下一章分式打好基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力。其中四个注意,则必须引起师生的高度重视。

因式分解中的四个注意散见于教材第5页和第15页,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。现举数例,说明如下,供参考。

例1 把-a2-b2+2ab+4分解因式。

解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-(a-b+2)(a-b-2)

这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。防止学生出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误? 膊荒芗 汉啪拖取疤帷保 匀 饨 蟹治觯?/p>

如例2 △abc的三边a、b、c有如下关系式:-c2+a2+2ab-2bc=0,求证这个三角形是等腰三角形。

分析:此题实质上是对关系式的等号左边的多项式进行因式分解。

证明:∵-c2+a2+2ab-2bc=0,∴(a+c)(a-c)+2b(a-c)=0,∴(a-c)(a+2b+c)=0.

又∵a、b、c是△abc的三条边,∴a+2b+c>0,∴a-c=0,

即a=c,△abc为等腰三角形。

例3把-12x2nyn+18xn+2yn+1-6xnyn-1分解因式。解:-12x2nyn+18xn+2yn+1-6xnyn-1=-6xnyn-1(2xny-3x2y2+1)

这里的“公”指“公因式”。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。防止学生出现诸如6p(x-1)3-8p2(x-1)2+2p(1-x)2=2p(x-1)2〔3(x-1)-4p〕=2p(x-1)2(3x-4p-3)的错误。

例4 在实数范围内把x4-5x2-6分解因式。

解:x4-5x2-6=(x2+1)(x2-6)=(x2+1)(x+6)(x-6)

这里的“底”,指分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。防止学生出现诸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y2(x2+1)(4x2-9)的错误。

由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”是一脉相承的。
例题:3ab+5b
-22y2+35y-3
a^2+b^2+ab+a+b+a+1
温馨提示:内容为网友见解,仅供参考
第1个回答  2012-02-11
熟记分解因试的方法,首先看是否含有公因式,其次看是否能用公式,最后分组,或者十字相乘法,对于后两种方法不做要求。
第2个回答  2012-02-11
一提,二套,三交叉,四分组,五裂项,六增减项,七待定系数,八十字相乘法,九换元法,十双十字相乘法。
南雅中学xxx
第3个回答  2012-02-11
1.提公因式法2.平方差公式3.完全平方公式4.十字交叉相乘法
第4个回答  2012-02-11
交叉法追问

忘记了,解释一下好么

追答

提出公因数,进行分解

八年级下册数学 怎样容易的把一个多项式因式分解
④分解因式,必须进行到每一个多项式因式都不能再分解为止.(6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式 另外,在多次多项式内,还可以用双十字相乘法,轮换对称法解决。主要注意事项:初学因式分...

初二数学因式分解技巧
技巧一:提取公因式法。如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。技巧二:公式法。技巧三:十字相乘法技巧。技巧四:双(长)十字相乘法。技巧五:主元法。:换元法。技巧六:分组分解法(添拆项)技巧七:因式...

初二数学因式分解技巧
初二数学因式分解技巧如下:1、公式法:利用平方差公式、完全平方公式和立方差公式等基本公式进行因式分解。例如,对于多项式a²-b²,我们可以使用平方差公式将其因式分解为(a+b)(a-b)。2、提取公因式法:找出多项式中的公因式,将其提取出来,从而将多项式进行简化。例如,对于多项式ax+...

如何把多项式因式分解?
因式分解的四种方法如下:1.公因数法:当多项式的所有项都含有共同的因子时,可以把这个因子提出来,然后用分配律将剩下的部分相加,进一步化简。2.十字相乘法:对于二次多项式ax²+bx+c,其因式可以表示为两个一次多项式的乘积。使用十字相乘法时,将a和c的乘积分解为两个因数的乘积,然后根据一...

如何快速地将多项式的因式分解呢?
1、一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。2、分组分解法指通过分组分解的方式来分解提公因式法和公式分解法无法直接分解的因式,分解方式一般分为“1+3”式和“2+2”式。3、待定系数法是初中数学的一个重要...

初二数学因式分解技巧有哪些?
初二数学因式分解技巧:(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:a2-b2=(a+b)(a-b)。a2+2ab+b2=(a+b)2。a2-2ab+b2=(a-b)2。如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。(...

初二的因式分解
因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又有拆项和添项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,轮换对称法,剩余定理法等。 基本方法 ⑴提公因式法 各项都含有的公共的因式叫做这个多项式各项的公因式。 如果一个多项式的各项有公因式,可以把这个公因式提...

怎样快速学会因式分解
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。提公因法,如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。分组...

把一个多项式分解因式,运用了什么方法?
x²-3x+2因式分解为:x²-3x+2 =x×x+(-2-1)x+2×1 =(x-1)(x-2),运用了十字相乘法。把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。因式分解主要有十字相乘法,...

因式分解的方法与技巧有哪些
把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,因式分解的方法有十字相乘法、提公因式法、待定系数法等。十字相乘法 1.十字相乘法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式运算来进行因式分解。2...

相似回答