计算:1\/(1*2)+1\/(2*3)+1\/(3*4)+1\/(4*5)+……1\/(99*100)=?
裂项相消:原式=1-(1\/2)+(1\/2)-(1\/3)+(1\/3)-(1\/4)+...+(1\/99)-(1\/100)=99\/100
小学奥数题1\/(1*2)+1\/(2*3)+1\/(3*4)+...+1\/(99*100)
1\/(1*2)+1\/(2*3)+1\/(3*4)+1\/(4*5)+1\/(5*6)+……+1\/(98*99)+1\/(99*100)=1-1\/2+1\/2-1\/3+...+1\/99-1\/100 =1-1\/100 =99\/100
用简便方法计算1\/1*2+1\/2*3+```+1\/99*100
过程:1\/1*2+1\/2*3+1\/3*4+...+1\/99*100 =1-1\/2+1\/2-1\/3+1\/3-1\/4+...+1\/99-1\/100 =1-1\/100 =99\/100 这种方法叫做裂项相消法。
一个数学问题
解:1\/(1*2)=1\/1-1\/2 1\/(2*3)=1\/2-1\/3 1\/(3*4)=1\/3-1\/4 ::1\/(99*100)=1\/99-1\/100 所以原式=(1\/1-1\/2)+……+(1\/99-1\/100)=99\/100
分数巧算:1\/1*2 1\/2*3 +1\/3*4 ……+1\/99*100=( )怎么算?
1+1\/2+1\/3+1\/4+...+1\/100=?告诉你一公式:1\/[n*(n+1)]=1\/n - 1\/(n+1)1\/1*2+1\/2*3+1\/3*4+...+1\/99*100 =(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/99-1\/100)=1-1\/100 =99\/100
1\/(1×2)+1\/(2×3)+1\/(3×4)+⋯+1\/(99×100)
原式=1-1\/2+1\/2-1\/3+...+1\/99-1\/100 =1-1\/100 =99\/100
...分之一加2乘3分之一加3乘4分之一一直加到99乘100分之一等于多少?
=1-1\/2+1\/2-1\/3+...+1\/99-1\/100 =1-1\/100 =99\/100 1、裂项法,这是分解与组合思想在数列求和中的具体应用。是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的。 通项分解(裂项)倍数的关系。2、此类变形的特点是将原数列每一项拆为两项之后,其中...
1乘2分之一加2乘3分之一加3乘4分之一一直加到99乘100分之一等于多少
运用裂项公式 分母是两个连续自然数的乘积的时候,有这样的规律。公式算法如下:1\/1*2+1\/2*3+1\/3*4+...+1\/99*100 =1-1\/2+1\/2-1\/3+...+1\/99-1\/100 =1-1\/100 =99\/100
1\/1*2+1\/2*3+1\/3*4...1\/98*99+1\/99*100解决思路 高手帮帮忙
解:原式=(1-1\/2)+(1\/2-1\/3)+……+(1\/99-1\/100)=1-1\/100 =99\/100 这道题是典型的裂项相消的题目,重点记住这个公式 1\/(n(n+1))=(1\/n)-(1\/n+1)然后拆开来的项对应相消,这种题目在竞赛中考得很频繁,需要熟记于心 ...
1×1\/2加2×1\/3加3×1\/4加省略号99×1\/100等于多少
99\/100 解题过程如下:1\/1*2+1\/2*3+1\/3*4+...+1\/99*100 =(1-1\/2)+(1\/2-1\/3)+(1\/3-1\/4)+...+(1\/99-1\/100)=1-1\/100 =99\/100