已知a+b+c=1,a^2+b^2+c^2=2,a^3+b^3+c^3=3,求abc的值。a^4+b^4+c^4

如题所述

第1个回答  2012-07-27
解:因为 (a+b+c)^2=a^2+b^2+c^2+2(ab+ac+bc)=1
=>ab+ac+bc= -1/2 .......@1

又有 (a+b+c)^3=3(a^2+b^2+c^2)(a+b+c)+6abc-2(a^3+b^3+c^3)
=>abc= 1/6 .......@2
由@1 =>(ab+ac+bc)^2=a^2*b^2+a^2*c^2+b^2*c^2+2abc(a+b+c)
=>a^2*b^2+a^2*c^2+b^2*c^2= (-1/2)^2-1/3= -1/12 ......@3
又因为 (a^2+b^2+c^2)^2=a^4+b^4+c^4+2(a^2*b^2+a^2*c^2+b^2*c^2)
=>a^4+b^4+c^4=4-(-1/12)=25/6

...b、c满足a+b+c=1,a^2+b^2+c^2=2,a^3+b^3+c^3=3,求a^4+b^4+c^4...
因为(a+b+c)^2-2(ab+bc+ac)=a^2+b^2+c`2=2 所以ab+bc+ac=-1\/2 ...A 因为a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-A)所以abc=1\/6 ...B 又a*2b^2+a*2c^2+b*2c^2=A^2-2(abca+abcb+abcc)=A^2-2abc(a+b+c)=-1\/12 ...C 所以a^4+b...

设a+b+c=6,a^2+b^2+c^2=14,a^3+b^3+c^3=36,求abc的值和a^4+b^4+c^...
所以ab+ac+bc=11 所以1\/2[(a-b)^2+(b-c)^2+(a-c)^2]=14-11=3 所以a^3+b^3+c^3-3abc=3*6=18 所以abc=(36-18)\/3=6 --- a^4+b^4+c^4=(a^2+b^2+c^2)^2-(2a^2b^2+2a^2c^2+2b^2c^2)因为(ab+bc+ac)^2=a^2b^2+b^2c^2+a^2c^2+2a^2bc+2...

江苏竞赛题,已知a+b+c=1,a²+b²+c²=2,a³+b³+c³=3...
详情请查看视频回答

a+b+c=1,a²+b²+c²=2,a³+b³+c³=3,则a^4+b^4+c^4=?
所以:4(ab+ac+bc)(a²+b²+c²)+3(a²+b²+c²)(a²+b²+c²)+8(a+b+c)abc-2(a^4+b^4+c^4)=1 将a³+b³+c³=3,ab+ac+bc=-1\/2,a+b+c=1,a²+b²+c²=2,abc=1\/6代入上...

已知a+b+c=2,a^2+b^2+c^2=3,a^3+b^3+c^3=4,求a^4+b^4+c^4的值
=a^2+b^2+c^2+2ab+2ac+2bc=3+2(ab+ac+bc)=4 ab+ac+bc=1\/2 (a+b+c)^3 =a^3+b^3+c^3+3(ab+ac+bc)(a+b+c)-3abc =4+3(1\/2)(2)-3abc=4+3-3abc=8 abc=-1\/3 (a+b+c)^4 =a^4+b^4+c^4+4a^3b+4a^3c+4b^3a+4b^3c+4c^3a+4c^3b+6a^2b^2+6a^...

已知正数a,b,c满足a+b+c=1,证明:a^3+b^3+c^3>=a^2+b^2+c^2\/3_百度知...
a^2+b^2+c^2)即::a^3+b^3+c^3>=(a^2+b^2+c^2)\/3 解释:第一步用到了柯西不等式第二步也可以理解为柯西不等式理解为幂平均不等式也行((a^2+b^2+c^2)(1+1+1)>=(a+b+c)^2这是柯西不等式,(a^2+b^2+c^2)\/3>=((a+b+c)\/3)^2(幂平均不等式))...

设a+b+c=2,a^2+b^2+c^2=14,a^3+b^3+c^3=20,求abc的值
=(2²-14)\/2 =-5 因为 a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-ac-bc)所以 abc=[(a³+b³+c³)-(a+b+c)(a²+b²+c²-ab-ac-bc)]\/3 ={(a³+b³+c³)-(a+b+c)[...

...已知实数a,b,c满足a+b+c=1,a²+b²+c²=3,则abc的最大值是...
又a+b=1-c ∴由韦达定理可知 a,b是关于x的方程x²+(c-1)x+(c²-c-1)=0的两根。∴⊿=(c-1)²-4(c²-c-1)≥0 整理可得3c²-2c-5≤0 解得: -1≤c≤5\/3 ab=c²-c-1 abc=c³-c²-c 构造函数f(x)=x³-x²-...

已知a+b+c=5 a^2+b^2+c^2=15 a^3+b^3+c^3=47 求(a^2+ab+b^2)(b^2+...
用到了三次方程根与系数的关系

已知:a+b+c=0,a^2+b^2+c^2=1,求代数式ab+bc+ca的值
a+b+c=0,a*a+b*b+c*c=1,(a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2bc 2(ab+bc+ac)=(a+b+c)^2-(a^2+b^2+c^2)=0-1=-1 ab+bc+ac=-1\/2,

相似回答