可导一定连续,连续不一定可导。
证明:
设y=f(x)在x0处可导,f'(x0)=A
由可导的充分必要条件有
f(x)=f(x0)+A(x-x0)+o(│x-x0│)
当x→x0时,f(x)=f(x0)+o(│x-x0│)
再由定理:当x→x0时,f(x)→A的充分必要条件是f(x)=A+a(a是x→x0时的无穷小)得,limf(x)=f(x0)。
扩展资料
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。
反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。
连续一定可导吗?请写出充分与必要条件.
可导一定连续,连续不一定可导 证明:可导一定连续 设y=f(x)在x0处可导,f'(x0)=A 由可导的充分必要条件有 f(x)=f(x0)+A(x-x0)+o(│x-x0│)当x→x0时,f(x)=f(x0)+o(│x-x0│)再由定理:当x→x0时,f(x)→A的充分必要条件是f(x)=A+a(a是x→x0时的无穷小)得...
连续一定可导?还是可导一定连续?
连续与可导的关系是:可导一定连续,连续不一定可导。连续是可导的必要条件,但不是充分条件,由可导可推出连续,由连续不可以推出可导。可以说:因为可导,所以连续。不能说:因为连续,所以可导。函数可导的充要条件 函数在该点连续且左导数、右导数都存在并相等。函数可导与连续的关系定理:若函数f(x)...
函数连续一定连续可导吗?
1、连续不一定可导,比如y=|x| 在x=0处是连续的但不可导。2、其左导数=-1,但右导数=1,只有左右导数同时存在且相等时才可导。3、函数在某点连续其极限一定存在,即左,右极限存在并相等且等于该点函数值。4、连续一定可微,即dx始终是存在的。连续函数的性质:1、有界性 所谓有界是指,存在一...
可导一定连续,连续不一定可导,这句话对吗,为什么?
可导一定连续,逆否命题同样为真,不连续一定不可导,连续不一定可导。例如绝对值函数就是连续的,但不可导,可导数一定连续是因为,定义里面就用到了连续的条件。
连续是可导的充要条件吗?
3、连续不一定可导。所以,左右导数存在且相等就能保证该点是连续的。仅有左右导数存在且该点连续不能保证可导:例如y=|x|在x=0点。因变量关于自变量是连续变化的,连续函数在直角坐标系中的图像是一条没有断裂的连续曲线。由极限的性质可知,一个函数在某点连续的充要条件是它在该点左右都连续。连...
导数定义中,连续是指可导吗?
这是对的。如果这个区间是开区间,那么函数在某开区间内可导的定义,就是这个函数在该区间内各个点处都可导。那么根据可导必然连续的性质,这个函数在该开区间内各个点都连续。所以这个函数在该开区间内连续。如果这个区间是闭区间,那么函数在这个区间内部各点可导,在左端点处有右导数,在右端点处有左...
连续不一定可导吗?
但在X等于0这一点,它的斜率为0 (不为一) 所以连续的不一定可导。注意 可导与连续的关系:可导必连续,连续不一定可导。可微与连续的关系:可微与可导是一样的。可积与连续的关系:可积不一定连续,连续必定可积。可导与可积的关系:可导一般可积,可积推不出一定可导。
函数连续一定可导吗?
②可导一定连续 证明:函数f(x)在x0处可导,f(x)在x0临域有定义 对于任意小的ε>0,存在⊿x=1\/[2f’(x0)]>0,使:-ε<[f(x0+⊿x)-f(x0)<ε 这可从导数定义推出 函数的近代定义 是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B...
为什么函数连续一定可导?
连续与可导的关系:1. 连续的函数不一定可导;2. 可导的函数是连续的函数;3.越是高阶可导函数曲线越是光滑;4.存在处处连续但处处不可导的函数。左导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限=右极限(左右极限都存在)。连续是函数的取值,可导是函数的变化率,当然可导...
为什么连续不一定可导?
连续的定义:1、点函数值等于该点极限。2、该点有定义。3、函数有极限。可导要满足:1、导数存在。2、左右导数相等。比如说:y= |x|这个函数就不满足上述所说的可导性,因为在x = 0时是不可导的,左右导数不相等。连续与可导的关系 1、连续的函数不一定可导;2、可导的函数是连续的函数;3、越...