关于“设方阵A满足A^2-A-2E=0,证明:A及A+2E都可逆,(A+2E)的逆矩阵”

前面求A的逆矩阵比较简单,为什么求A+2E的逆矩阵不能这样:因为A可逆,所以A²可逆,然后A²=A+2E,等式两边都乘A∧(-2),得到E=(A+2E)×A∧(-2),从而A+2E逆矩阵为A∧(-2)

A^2-A-2E=0推出A^2-A=2E,所以A(A-E)=2E,从而A的逆矩阵为1/2(A-E).

A^2-A-2E=0推出A^2-A-6E=-4E,所以(A+2E)(A-3E)=-4E,从而A+2E的逆矩阵为-1/4(A-3E).

可以如图改写已知的等式凑出逆矩阵。

扩展资料

性质定理

1.可逆矩阵一定是方阵。

2.如果矩阵A是可逆的,其逆矩阵是唯一的。

3.A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。

4.可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)

5.若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。

6.两个可逆矩阵的乘积依然可逆。

7.矩阵可逆当且仅当它是满秩矩阵。

温馨提示:内容为网友见解,仅供参考
第1个回答  2019-03-06
已知A²-A-2E=O
那么A(A-E)=2E
即A(A-E)/2=E
于是A是可逆的,其逆矩阵为(A-E)/2
同理(A+2E)(A-3E)=-4E
即(A+2E)(-A+3E)/4=E
于是A+2E是可逆的,其逆矩阵为(-A+3E)/4
第2个回答  2019-03-06
第一种不对, 因为此时还不知道 A+E 是否可逆.
第二种是对的.
知识点: 若A,B是同阶方阵, 且 AB=E, 则A,B都可逆,并且 A^-1=B,B^-1=A.
由于 A[(1/2)(A-E)] = E
所以A可逆, 且 A^-1 = (1/2) (A-E).
同理, 由A^2-A-2E=0
则有 A(A+2E) -3(A+2E) + 4E = 0
所以 (A-3E)(A+2E) = -4E
所以 A+2E 可逆, 且 (A+2E)^-1 = (-1/4) (A-3E).
第3个回答  2015-11-01
当然可以(不过这不是配方而是因式分解),不过然后呢?并没有什么卵用。

正解是E=(1/2)(A^2-A)=A[(1/2)(A-E)],因此A可逆。
再由|A+2E|=|A^2|=|A|^2不等于0知A+2E可逆。
第4个回答  2019-03-06
思路没有问题。
实际上这种求逆矩阵的题目,答案的表现形式并不是唯一的
但是可以证明他们都相等追问

好的!谢谢,主要是看了书上答案还有网上搜索的答案全是(-A+3E)/4,搞不懂我这样的思路和算法为什么不对。是的,确认可以证明出来相等的

本回答被提问者采纳

设方阵A满足A^2-A-2E=0,证明A+2E可逆,并求(A+2E)的逆矩阵。
矩阵里面的E相当于实数里面的“1”所以 A^2-A-2E=(A-3E)(A+2E)=-4E

关于“设方阵A满足A^2-A-2E=0,证明:A及A+2E都可逆,并求A的逆矩阵及(A...
第二种是对的.知识点: 若A,B是同阶方阵, 且 AB=E, 则A,B都可逆,并且 A^-1=B,B^-1=A.由于 A[(1\/2)(A-E)] = E 所以A可逆, 且 A^-1 = (1\/2) (A-E).同理, 由A^2-A-2E=0 则有 A(A+2E) -3(A+2E) + 4E = 0 所以 (A-3E)(A+2E) = -4E 所以 A+2E ...

设方阵A满足A^2-A-2E=0,证明:A及A+2E都可逆,并求A的逆矩阵及(A+2E...
A^2-A-2E=0推出A^2-A=2E,所以A(A-E)=2E,从而A的逆矩阵为1\/2(A-E).A^2-A-2E=0推出A^2-A-6E=-4E,所以(A+2E)(A-3E)=-4E,从而A+2E的逆矩阵为-1\/4(A-3E).可以如图改写已知的等式凑出逆矩阵。

设方阵A满足A2-A-2E=0,证明:A和A+2E均可逆,并求A和A+2E的逆矩阵
解答:证明:∵方阵A满足A2-A-2E=0,∴A2-A=2E,∴A×A?E2=E所以A可逆,逆矩阵为A?E2,∵方阵A满足A2-A-2E=0,∴A2=A+2E,由A可逆知A2可逆,所以A+2E可逆,逆矩阵为[A?E2]2=(A?E)24

设方阵A满足A^2-A-2E=0,证明:A及A 2E都可逆,并求A的逆矩阵及(A 2E...
设方阵A满足A^2-A-2E=0,证明:A及A 2E都可逆,并求A的逆矩阵及(A 2E)的逆矩阵  我来答 1个回答 #热议# 得了狂犬病会有什么症状?路箩筐 2014-06-27 · TA获得超过221个赞 知道小有建树答主 回答量:305 采纳率:0% 帮助的人:304万 我也去答题访问个人页 关注 ...

已知方阵A满足A的平方-A-2E=0,证明(1)A及A+2E可逆;(2)求A的逆及A+2E...
A^2-A-2E=0 A^2-A=2E A(A-E)=2E 因此 A可逆,且逆是(A-E)\/2 A^2-A-6E=-4E (A+2E)(A-3E)=-4E 因此 A+2E可逆,且逆是-(A-3E)\/4

设方阵A满足A^2-A-2E=0 证明A及A+2E都可逆
简单计算一下即可,答案如图所示

设方阵A满足 A的平方 -2A-2E=0,证明A及A-2E均可逆,并求A的逆阵,(A-2...
A^2 -2A-2E=0 两端左乘A^(-1)得 A-2E-2A^(-1)=0 A^(-1)=(A-2E)\/2 两端同乘(A-2E)^(-1)得 (A-2E)^(-1)A^(-1)=1\/2 两端再右乘A得 (A-2E)^(-1)=A\/2

设方阵A满足A^2-A-2E=0 证明A及A+2E都可逆
A^2-A-2E=0推出A^2-A=2E,所以A(A-E)=2E,从而A的逆矩阵为1\/2(A-E).A^2-A-2E=0推出A^2-A-6E=-4E,所以(A+2E)(A-3E)=-4E,从而A+2E的逆矩阵为-1\/4(A-3E).可以如图改写已知的等式凑出逆矩阵。

设方阵A满足A²-A-2E=0,证明A及A+2E都可逆,并求它们的逆矩阵。
因为:a²-a-2e=0 所以,上式化简为:a(a-e)=2e a [(1\/2)(a-e)]=e 所以根据可逆阵的定义,得 a可逆,且:a^(-1)=(1\/2)(a-e);而根据 a²-a-2e=(a+2e)(a-3e)-4e =0 可知:(a+2e)[-1\/4(a-3e)]=e 因此:a+2e是可逆阵,且:(a+2e)^(-1)=(-1...

相似回答