1+2+3+…+99+100+99+…+3+2+1简算?

如题所述

1+2+3+...+99+100+99+...+3+2+1
=(1+99)+(2+98)+(3+97)+...(49+51)+50+100+(99+1)+(98+2)+(97+3)+...+(51+49)+50
=2×【(100×50)+50】
=2×5050
=10100
温馨提示:内容为网友见解,仅供参考
第1个回答  2020-12-23
答:1+2+3+…+99+100+99+…+3+2+1=(1+100)×100/2+(99+1)×99÷2=5050+4950=10000
(望采纳)
第2个回答  2022-06-25
是应该这样来进行计算。首先把一加到99,两边加括弧乘以2再加100。然后括弧内的再把,1和99结合,2和98结合。这样的话就一共会有49组100,再加上50。
49×100+50=4950。然后把4950×2+100=10000。
第3个回答  2020-12-23
1+2+3+…+99+100+99+…+3+2+1
=(1+99)+(2+98)+…+(49+51)+50+100+(1+99)+(2+98)+…+(49+51)+50
=(1+99)×49×2+100+50+50
=100×49×2+200
=9800+200
=10000

1+2+3+…+99+100+99+…+3+2+1简算?
1+2+3+...+99+100+99+...+3+2+1 =(1+99)+(2+98)+(3+97)+...(49+51)+50+100+(99+1)+(98+2)+(97+3)+...+(51+49)+50 =2×【(100×50)+50】=2×5050 =10100

计算1+2+3+……+99+100+99+98+……+3+2+1的值
1+2+3+...+100=5050是已知的,看过高斯故事的都知道,所以原式=5050+4950=10000

1+2+3...+99+100+99+...+3+2+1=??? 急急急!!!
很多年以前数学王子高斯就给解答了。1+2+3+4+...+100=5050,则99+98+97+...+2+1=5050-100=4950,则原式=5050+4950=10000。

1+2+3+...+99+100+99+...+3+2+1=?
10000。具体看图说话:将每一个前面的1和后面的99想加得100,2和98想加得100,总共有100个100,就是100×100=10000

1+2+3+4+...+99+100+99+98+98+...+4+3+2+1的简便运
回答:101×100=10100

1+2+3+4+...+99+100+99+98+98+...+4+3+2+1简便计算方法
原式=(1+2+3+4+...+99+100)+(99+98+98+...+4+3+2+1)=(1+100)*100\/2+(1+99)*99\/2=5050+4950=10000

1+2+3+…+99+100=? 用什么方法计算?
1+2+3+…+99+100=50×(1+100)=50×101=5050。看明白了吗?希望我的回答对你有所帮助。

1+2+3+4+…+99+100怎么用简便计算
1+2+3+4+…+99+100 =(1+100)×100÷2 =5050

1+2+3+...+9+10+9+...+3+2+1是多少 急
1+2+1=2的平方 1+2+3+2+1=3的平方 ……1+2+3+...+8+9+8...+3+2+1=9的平方 1+2+3+...+9+10+9+...+3+2+1=10的平方 可以找规律,若要计算的话,计算两个1+2+3+...+9=45 再加10,即45*2+10=100

1+2+3+4+…+99等于几?
2. 当我们这样配对相加时,每一对的和都是100。因为1加99等于100,2加98也等于100,依此类推,直到49加51,它们的和同样是100。3. 由于一共有49对这样的数,每对的和是100,所以这些数的总和是49乘以100。4. 此外,我们还需要加上中间的数50,因为50既不是第一对数的第一个数,也不是最后...

相似回答