高二数学排列组合问题

1、一段铁路原有m个车站,为适应客运要求,要增加n(n>1)个车站,这时客车票增加了58种,问原有车站数m是多少?
2、从六名运动员中,选出四名参加4×100m接力赛,若甲乙都不跑第一棒,有多少种不同的安排方案?
3、用0,1,2,3,4这五个数字组成没有重复的三位数,其中偶数共有多少个?

要有过程,不要穷举

第1题:
每个车站都有发往其它站的票,有m个车站时会有 m(m-1) 种车票,增加n个站后总共有 (m+n) 个车站时会有 (m+n)(m+n-1) 种车票,则我们可以列式:
(m+n)(m+n-1)- m(m-1)=58
化简可得
(m+n)(m+n-1)- m(m-1)=n(2m+n-1)=58
由于m,n均为整数,则 2m+n-1 也是整数,故由上式可得 n 与 2m+n-1 是58的两个因子,由于58=2*29=1*58,所以说
① n=2,2m+n-1=29,可得m=14;
② n=1,2m+n-1=58,可得m=29;
所以答案有两种,原有14个站,新增加2个车站,或者原有29个站,新增加1一个车站;(这个不叫凑,也不叫蒙,这个方法叫做分析法,完整格式,结束)

接下来两题均为特殊元素或特殊位置优先安排问题,

第2题:
分步,第一道不要甲或者乙,优先安排,有4种选择,剩下3道和5人随便安排,有A(5,3)=60种选择,总有N=4*60=240种选择;

第3题:
特殊位置末位(必须是偶数)与首位(必须非零),
第一类,末位为0,另外2个位置4个数字随便取,有N1=4*3=12种;
第二类,末位为2或者4,有2种情况,首位非零,有3种情况,中间位置随便取,有3中情况,故N2=2*3*3=18种;
所以总有N=N1+N2=30种情况;

留下了我的名字~#$%^&*
温馨提示:内容为网友见解,仅供参考
第1个回答  2011-03-28
第二题

没法输入角标,你按照念的顺序写吧 A64-A53-A53=10首先,跑步存在顺序,所以用A所有情况为A64 即6个人中选4个排序,减去,甲跑第一棒的情况,那么,甲固定,剩下3个位置5个人里面选3个排所以为A53,再减去乙跑第一棒的情况理由同上也是A53
6x5x4x3-5x4x3x2x2=360-240=120

第三题

52个

要得到偶数,那么个位可以为0,2,4三种。

首先以0为个位,那么百位可以有1,2,3,4,5五种选择,需要不重复的数字,那么十位就为剩下的四种选择,这种方法就有5*4=20个;

以2为个位,那么百位只有1,3,4,5四种选择,同理,但是十位可以有0,所以十位有四种选择,这种方法有4*4=16个;

最后以4为个位,百位可以有1,2,3,5四种选择,则十位可以有0,十位也有四种选择,这种方法有4*4=16个;

最后把这些方法加起来即为最终答案:20+16+16=52

所以这样的偶数有52个
第2个回答  2011-03-26
2.C41*P53
第一位不是甲乙,4选一。接下来就是5个选3

3.P42+C31*C31+C31*C31
第一种,0结尾。P42
第2种,2结尾,第一位不可以是0.C31,第2位C31
第3种,4结尾,第一位不可以是0.C31,第2位C31

高二数学知识点
排列(Pnm)和组合(Cnm)的概念和计算公式。从N个元素中取出R个,排列数为nx(n—1)x(n—2),(n—R+1);组合数为N!\/R!(N—R)!。举例:从1到9共9个号码球,组成三位数的排列数为9x8x7,组合数为9x8x7\/3x2x1。排列组合问题分析:例1,3名学生参加4个课外小组的不同方法,分...

高二数学排列组合问题6
在解答高二数学排列组合问题时,我们首先需要区分男、女生排列的不同情况。若男性排在第一位,女性只能从剩余的四个位置中进行排列,故此时的排列方式为A44。同理,若女性排在第一位,男性同样只能从剩余四个位置中进行排列,此时的排列方式也是A44。因此,考虑到两种情况,最终的解答为2*A44*A44。在...

如何计算高中数学的排列组合问题
1. **确定问题类型**:- 如果问题涉及到元素的顺序,那么通常是排列问题。- 如果问题不关心元素的顺序,那么通常是组合问题。2. **应用排列公式**:- 排列公式是 \\(P(n, r) = \\frac{n!}{(n-r)!}\\),其中 \\(n!\\) 表示从1到 \\(n\\) 的所有整数的乘积,\\(n-r!\\) 表示从1到 \\...

高中数学排列组合常用解题方法
5、有序分配问题,采用逐分法;6、多元问题,采用分类法;7、交叉问题,采用集合法;8、定位问题,采用优先法;9、多排问题,采用单排法;10、至少问题,采用间接法;11.选排问题,采用先取后排法;12.复杂排列组合问题,采用构造模型法。

如何求解高中数学题目中的排列组合问题?
在高中数学中,排列与组合是一个非常重要的概念,它们在各种问题中都有广泛的应用。下面我将介绍一些解决排列和组合问题的基本方法。1. 排列 排列是从n个不同元素中取出m(m≤n)个不同元素进行排列的方法数,通常用P(n,m)表示。公式:P(n,m)=n!\/(n-m)!例如,从A、B、C、D四个字母中取出3...

怎么解决数学排列组合题?
高中数学排列组合秒杀技巧如下:1、相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列。2、相离问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端。3、定序问题缩倍法:在排列问题中限制...

高中数学,高考常考的排列组合20种解题策略汇总!
首先,要了解基础概念。排列是有序的组合,组合则是无序的组合。掌握基本的排列公式与组合公式是解决问题的关键。例如,从n个不同元素中取出m个元素进行排列,公式为P(n,m)=n!\/(n-m)!;从n个不同元素中取出m个元素进行组合,公式为C(n,m)=n!\/(m!(n-m)!).其次,掌握分类讨论和分步计数...

高中数学排列组合 求解
先考虑3个一组的可能性 3种不同颜色的球 红黄绿 1种,剩下的3个颜色的球一样一个 所以排列的方法有 1×4×3×2×1=24种 2种不同颜色的球 2红1黄;2红1绿;2黄1红;2黄1绿;2绿1红;2绿1黄 共6种,剩下的3个球中 2个同色,一个异色 所以排列的方法有 6×4×3×2×1÷2=...

数学的排列组合问题
6 8 9 10 11 四种 7 9 10 11 三种 8 两种 9 一种 5+4+3+2+1=15 3一人在前排一人在后排 则有4*7=28 所以一共是4+15+28=47

数学排列组合问题,怎么算?
从 25 个人中任意抽出 2 个人进行比赛。共有 C25(2) = 25*24\/2 = 300 种;从 25 个人中任意抽出 1 个人,再从这 7 个人中抽出 1 个人进行比赛,共有:C25(1) * C7(1) = 175 种。也就是说,上面 300 + 175 = 475 种比赛抽签组合中绝对可以保证 这 7 个人都不互相遇到对方。当然...

相似回答