20190821 数学04
怎样证明根号2是无理数
2=(p\/q)^2 即:2=p^2\/q^2 通过移项,得:2q^2=p^2 ∴p^2必为偶数 ∴p必为偶数 令p=2m 则p^2=4m^2 ∴2q^2=4m^2 化简得:q^2=2m^2 ∴q^2必为偶数 ∴q必为偶数 综上,q和p都是偶数 ∴q、p互质,且q、p为偶数 矛盾 原假设不成立 ∴√2为无理数 参考欧几里得《几何...
证明开根号2是无理数?
证明根号2是无理数 如果√2是有理数,必有√2=p\/q(p、q为互质的正整数)两边平方:2=p^\/q^ p^=2q^ 显然p为偶数,设p=2k(k为正整数)有:4k^=2q^,q^=2k^ 显然q业为偶数,与p、q互质矛盾 ∴假设不成立,√2是无理数
如何证明根号2是无理数?
所以:根号2是无理数。这种方法叫反证法,1,假设相反的情况成立。2,根据假设得出于假设矛盾的结论。3,从而证明假设错误,原命题正确。常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。无理数也可以通过非终止的连续分数来处理。无理数是指实数范围内不能表示成两个整数之比的数。简单...
如何证明根号2是无理数呢?
证明根号2是无理数:如果√2是有理数,必有√2=p\/q(p、q为互质的正整数);两边平方:2=p^\/q^;p^=2q^。显然p为偶数,设p=2k(k为正整数);有:4k^=2q^,q^=2k^。显然q业为偶数,与p、q互质矛盾;∴假设不成立,所以根号2是无理数。无理数:无理数,也称为无限不循环小数,...
√2是无理数的证明方法
所以,BD\/BC不能表示为两个整数之比p\/q(否则BD\/p=BC\/q,这就成为了那个x)。这样就证明了BD(可以是√2或者其他等腰直角三角形的斜边长)只能是无理数了。方法4:奇偶分析法:假设√2=a\/b那么可以得到a*a=2*b*b,(a,b)=1,(表示a与b最大的公因数是1,a和b都是正整数。根据2*b*b...
如何证明根号2是无理数?
例子:证明根号2是无理数。证明:若根号2是有理数,则设它等于m\/n(m、n为不为零的整数,m、n互质)所以 (m\/n)^2=根号2 ^2 =2 所以 m^2\/n^2=2 所以 m^2=2*n^2 所以 m^2是偶数,设m=2k(k是整数)所以 m^2=4k^2=2n^2 所以 n^2=2k^2 所以 n是偶数 因为 m、n互质...
如何证明根号二是无理数
则令根号2=q\/p,其中p、q为互质的正整数 两边平方,2=q^2\/p^2 q^2=2p^2,所以q^2是偶数,即q是偶数 所以令q=2k,其中k是正整数 4k^2=2p^2 p^2=2k^2,所以p^2是偶数,即p是偶数 因为p、q都是偶数,所以有公因数2 这与p、q互质矛盾 所以根号2是无理数 ...
为什么根号2是无理数?
证明根号2是无理数 如果√2是有理数 ,必有√2=p\/q(p、q为互质的正整数)两边平方:2=p^\/q^ p^=2q^ 显然p为偶数,设p=2k(k为正整数)有:4k^=2q^,q^=2k^ 显然q业为偶数,与p、q互质 矛盾 ∴假设不成立,√2是无理数 满意请采纳 ...
如何证明✔2是无理数?
求证:根号2是无理数:分析:用反证法证明。证明:假设根号2是有理数,则设可设它等于m\/n(m、n为不为零的整数,m、n互质)所以 (m\/n)^2=根号2 ^2 =2 所以 m^2\/n^2=2 所以 m^2=2*n^2 所以 m^2是偶数,设m=2k(k是整数)所以m^2=4k^2=2n^2 所以 n^2=2k^2 所以 n...
如何证明根号2是无理数
最简单的证明方法:设sqrt(2) = m\/n m,n是整数,并且约分到(m,n)=1 那么2 = m^2 \/ n^2 所以m是偶数,设m = 2u 那么2 = 4u^2 \/ n^2 所以n^2 = 2u^2 所以n也是偶数,这与(m,n)=1矛盾 所以根号2是无理数